Mathematics Curriculum

Topic B:

Decimal Expansions of Numbers

8.NS.A.1, 8.NS.A.2, 8.EE.A. 2

\begin{tabular}{|c|c|c|}
\hline Focus Standard: \& 8.NS.A. 1
8.NS.A. 2

8.EE.A. 2 \& | Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. |
| :--- |
| Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{2}$, show that $\sqrt{2}$ is between 1 and 2 , then between 1.4 and 1.5, and explain how to continue to get better approximations. |
| Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational. |

\hline Instructional Days: \& 9 \&

\hline Lesson 6: \& Finite and \& ite Decimals (P) ${ }^{1}$

\hline Lesson 7: \& Infinite \& ls (S)

\hline Lesson 8: \& The Long \& sion Algorithm (E)

\hline Lesson 9: \& Decimal \& sions of Fractions, Part 1 (P)

\hline Lesson 10: \& Converti \& epeating Decimals to Fractions (P)

\hline Lesson 11: \& The Decim \& Expansion of Some Irrational Numbers (S)

\hline Lesson 12: \& Decimal Ex \& nsion of Fractions, Part 2 (S)

\hline Lesson 13: \& Comparin \& rational Numbers (E)

\hline Lesson 14: \& Decimal Ex \& nsion of π (S)

\hline
\end{tabular}

[^0]Throughout this topic the terms expanded form of a decimal and decimal expansion are used. The expanded form of a decimal refers to the value of a number written as a sum. For example, the expanded form of the decimal 0.125 is $\frac{1}{10}+\frac{2}{10^{2}}+\frac{5}{10^{3}}$, which is closely related to the notion of expanded form used at the elementary level. When students are asked to determine the decimal expansion of a number such as $\sqrt{2}$, we expect them to write the number in decimal form. For example, the decimal expansion of $\sqrt{2}$ begins with 1.4142. The examination of the decimal expansion leads to an understanding of irrational numbers. Numbers with decimal expansions that are infinite, i.e., non-terminating, that do not have a repeating block are called irrational numbers. Numbers with finite, i.e., terminating, decimal expansions, as well as those numbers that are infinite with repeating blocks, are called rational numbers. Students spend significant time engaging with finite and infinite decimals before the notion of an irrational number is introduced in Lesson 11.

In Lesson 6, students learn that every number has a decimal expansion that is finite or infinite. Finite and infinite decimals are defined and students learn a strategy for writing a fraction as a finite decimal that focuses on the denominator and its factors. That is, a fraction can be written as a finite decimal if the denominator is a product of twos or fives. In Lesson 7, students learn that numbers that cannot be expressed as finite decimals are infinite decimals. Students write the expanded form of infinite decimals and show on the number line their decimal representation in terms of intervals of tenths, hundredths, thousandths, and so on. This work with infinite decimals prepares students for understanding how to approximate the decimal expansion of an irrational number. In Lesson 8, students use the long division algorithm to determine the decimal form of a number and can relate the work of the algorithm to why digits in a decimal expansion repeat. It is in these first few lessons of Topic B that students recognize that rational numbers have a decimal expansion that repeats eventually, either in zeros or a repeating block of digits. The discussion of infinite decimals continues with Lesson 9 where students learn how to use what they know about powers of ten and equivalent fractions to make sense of why the long division algorithm can be used to convert a fraction to a decimal. Students know that multiplying the numerator and denominator of a fraction by a power of ten is similar to putting zeros after the decimal point when doing long division.
In Lesson 10, students learn that a number with a decimal expansion that repeats can be expressed as a fraction. Students learn a strategy for writing repeating decimals as fractions that relies on their knowledge of multiplying by powers of 10 and solving linear equations. Lesson 11 introduces students to the method of rational approximation using a series of rational numbers to get closer and closer to a given number. Students write the approximate decimal expansion of irrational numbers in Lesson 11, and it is in this lesson that irrational numbers are defined as numbers that are not equal to rational numbers. Students realize that irrational numbers are different because they have infinite decimal expansions that do not repeat. Therefore, irrational numbers are those that are not equal to rational numbers. Rational approximation is used again in Lesson 12 to verify the decimal expansions of rational numbers. Students then compare the method of rational approximation to long division. In Lesson 13, students compare the value of rational and irrational numbers. Students use the method of rational approximation to determine the decimal expansion of an irrational number, and then compare that value to the decimal expansion of rational numbers in the form of a fraction, decimal, perfect square, or perfect cube. Students can now place irrational numbers on a number line with more accuracy than they did in Lesson 2 . In Lesson 14, students approximate π using the area of a quarter circle that is drawn on grid paper. Students estimate the area of the quarter circle using inner and outer boundaries. As with the method of rational approximation, students continue to refine their estimates of the area which improves their estimate of the value of π. Students then determine the approximate values of expressions involving π.

[^0]: ${ }^{1}$ Lesson Structure Key: P-Problem Set Lesson, M-Modeling Cycle Lesson, E-Exploration Lesson, S-Socratic Lesson

