Topic B:

Linear Equations in Two Variables and Their Graphs

8.EE.B. 5

Focus Standard:	8.EE.B.5	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
Instructional Days:	5	
Lesson 10:	A Critical Look at Proportional Relationships (S) ${ }^{1}$	
Lesson 11:	Constant Rate (P)	
Lesson 12:	Linear Equations in Two Variables (E)	
Lesson 13:	The Graph of a Linear Equation in Two Variables (S)	
Lesson 14:	The Graph of a Linear Equation—Horizontal and Vertical Lines (S)	

Topic B begins with students working with proportional relationships related to average speed and constant speed. In Lesson 10, students use information that is organized in the form of a table to write linear equations. In Lesson 11, students learn how to apply the concept of constant rate to a variety of contexts requiring two variables (8.EE.B.5). Lesson 12 introduces students to the standard form of an equation in two variables. At this point, students use a table to help them find and organize solutions to a linear equation in two variables. Students then use the information from the table to begin graphing solutions on a coordinate plane. In Lesson 13, students begin to question whether or not the graph of a linear equation is a line, as opposed to something that is curved. Lesson 14 presents students with equations in standard form, $a x+b y=c$, where $a=0$ or $b=0$, which produces lines that are either vertical or horizontal.

[^0]
[^0]: ${ }^{1}$ Lesson Structure Key: P-Problem Set Lesson, M-Modeling Cycle Lesson, E-Exploration Lesson, S-Socratic Lesson

