Topic A:

Area of Triangles, Quadrilaterals, and Polygons

6.G.A. 1

| Focus Standard: | 6.G.A.1Find the area of right triangles, other triangles, special quadrilaterals, and
 polygons by composing into rectangles or decomposing into triangles and
 other shapes; apply these techniques in the context of solving real-world and
 mathematical problems. |
| :--- | :--- | :--- |
| Instructional Days: | 6 |
| Lesson 1: | The Area of Parallelograms Through Rectangle Facts (S) ${ }^{1}$ |
| Lesson 2: | The Area of Right Triangles (E) |
| Lesson 3: | The Area of Acute All Triangles Using Height and Base (M) |
| Lesson 4: | The Area of All Triangles Using Height and Base (E) |
| Lesson 5: | The Area of Polygons Through Composition and Decomposition (S) |
| Lesson 6: | Area in the Real World (E) |

In Topic A, students discover the area of triangles, quadrilaterals, and other polygons through composition and decomposition. In Lesson 1, students discover through composition that the area of a parallelogram is the same as the area of a rectangle with the same base and height measurements. Students show the area formula for the region bound by a parallelogram by composing it into rectangles and determining that the area formula for rectangles and parallelograms is $A=b h$. In Lesson 2 , students justify the area formula for a right triangle by viewing the right triangle as part of a rectangle composed of two right triangles. They discover that a right triangle is exactly half of a rectangle, thus proving that the area of a triangle is $\frac{1}{2} b h$.
Students further explore the area formula for all triangles in Lessons 3 and 4. They decompose triangles into right triangles and deconstruct triangles to discover that the area of a triangle is exactly one half the area of a parallelogram. Using known area formulas for rectangles, triangles, and parallelograms, students find area formulas for polygons by decomposing the regions into triangles, rectangles, and parallelograms. Specifically,

[^0]students use right triangles to develop an understanding of the area of all triangles. They decompose the region of a trapezoid into two triangles and determine the area. The topic closes with Lesson 6, where students determine the area of composite figures in real-life contextual situations using composition and decomposition of polygons. They determine the area of a missing region using composition and decomposition of polygons.

[^0]: ${ }^{1}$ Lesson Structure Key: P-Problem Set Lesson, M-Modeling Cycle Lesson, E-Exploration Lesson, S-Socratic Lesson

