Student Outcomes

- Students determine the surface area of three-dimensional figures, those that are composite figures and those that have missing sections.

Lesson Notes

This lesson is a continuation of Lesson 23. Students will continue to work on surface area advancing to figures with missing sections.

Classwork

Example 1 (8 minutes)

Students should solve this problem on their own.

Scaffolding:

- As in Lesson 23, students can draw nets of the figures to help them visualize the area of the faces. They could determine the area of these without the holes first and subtract the surface area of the holes.
- Describe the method you used to determine the surface area.
- Answers will vary: I determined the surface area of each prism separately and added them together. Then I subtracted the area of the sections that were covered by another prism.
- If all three prisms were separate, would the sum of their surface areas be the same as the surface area you determined in this example?
- No, if the prisms were separate, there would be more surfaces shown. The three separate prisms would have a greater surface area than this example. The area would be greater by the area of four in. in. squares (in^{2}).

Example 2 (5 minutes)

Example 2

a. Determine the surface area of the cube.

Scaffolding:

- As in Lesson 23, students can draw nets of the figures to help them visualize the area of the faces. They could determine the area of these without the holes first and subtract the surface area of the holes.
- Explain how in. represents the surface area of the cube.
- The area of one face, one square with side length of in., is in , and so a total area of all six faces is in .
b. A square hole with a side length of inches is drilled through the cube. Determine the new surface area.

Surface Area of cube with holes

| $i n$. | $i n$ | | |
| :---: | :---: | :---: | :---: | :---: |
| $i n^{2}$ | $i n$ | $i n$. | $i n$ |
| $i n^{2}$ | in | | |

- How does drilling a hole in the cube change the surface area?
- We have to subtract the area of the square at the surface from each end.
- What happens to the surfaces that now show inside the cube?
- These are now part of the surface area.
- What is the shape of the piece that was removed from the cube?
- A rectangular prism was drilled out of the cube with the following dimensions: in. in. in.
- How can we use this to help us determine the new total surface area?
- We can find the surface area of the cube and the surface area of the rectangular prism, but we will have to subtract the area of the square bases from the cube and also exclude these bases in the area of the rectangular prism.
- Why is the surface area larger when holes have been cut into the cube?
- There are more surfaces showing now. All of the surfaces need to be included in the surface area.
- Explain how the expression
in.
in. in.
in. in. in. represents the surface area of the cube with the hole.
- From the total surface area of a whole (uncut) cube, the surface of the cube) are subtracted: in. area of the four lateral faces of the cut out prism,
in
in.
in.
in. in. .

Example 3 (5 minutes)

- What strategies could you use to help you solve this problem?
- I could draw a picture of the pyramid and label the sides so that I can visualize what the problem is asking me to do.

- What information have we been given? How can we use the information?
- We know the total surface area, and we know the length of the sides of the square.
- We can use the length of the sides of the square to give us the area of the square base.
- How will the area of the base help us determine the slant height?
- First, we can subtract the area of the base from the total surface area in order to determine what is left for the lateral sides.
- Now we can divide the remaining area by to get the area of just one triangular face.
- Finally, we can work backwards. We have the area of the triangle, and we know the base is in., so we can solve for the height.

Exercises 1-8 (20 minutes)

Students work in pairs to complete the exercises.

Exercises 1-8
Determine the surface area of each figure. Assume all faces are rectangles unless it is indicated otherwise.
1.

Top and bottom

Extra interior sides
Left and right sides
Front and back sides

Surface area
2. In addition to your calculation, explain how the surface area was determined.

The surface area of the prism is found by taking the sum of the areas of the trapezoidal front and back areas of the four different sized rectangles that make up the lateral faces.

Area top

Area bottom

Area sides

Area front and back

Surface Area

COMMON
3.

There are two such rectangular prisms, so the surface area of both is in ${ }^{2}$.

Surface Area of Middle Prism:
Area of front and back
in. in. in 2
Area of sides
in. in. $i n^{2}$
Surface area $\quad \mathrm{in}^{2} \quad \mathrm{in}^{2} \quad \mathrm{in}^{2}$
4. In addition to your calculation, explain how the surface area was determined.

Surface Area
5. A hexagonal prism has the following base and has a height of units. Determine the surface area of the prism.

6. Determine the surface area of each figure.
a.

m
m^{2}
m^{2}
b. A cube with a square hole with m side lengths has been drilled through the cube.

c. A second square hole with m side lengths has been drilled through the cube.

7. The figure below shows cubes with an edge length of unit. Determine the surface area.

Area top and bottom	units 2
Area sides	units 2
Area front and back	units 2
Surface Area	
	units 2

8. The base rectangle of a right rectangular prism is ft . ft . The surface area is ft^{2}. Find the height. Let be the height in feet.

Area of one base: ft. ft. $\quad f t^{2}$
Area of two bases: $\quad f t^{2} \quad f t^{2}$

Numeric area of four lateral faces: ft $\quad f t^{2} \quad f t^{2}$

Algebraic area of four lateral faces:

Solve for

The height is feet.

Closing (2 minutes)

- Write down three tips that you would give a friend that is trying to calculate surface area.

Exit Ticket (5 minutes)

Name \qquad Date \qquad

Lesson 24: Surface Area

Exit Ticket

Determine the surface area of the right rectangular prism after the two square holes have been drilled. Explain how you determined the surface area.

Exit Ticket Sample Solutions

Determine the surface area of the right rectangular prism after the two square holes have been drilled. Explain how you determined the surface area.

Area of top and bottom

Area inside

Surface Area

Take the sum of the areas of the four lateral faces of the main rectangular prism, and subtract the areas of the four square cuts from the area of the bases of the main rectangular prism. Finally, add the lateral faces of the prisms that were cut out of the main prism.

Problem Set Sample Solutions

Determine the surface area of each figure.

1. In addition to the calculation of the surface area, describe how you found the surface area.

Area of top

Area of bottom

Area of left and right sides

Area of front and back sides

Surface area

Split the area of the two trapezoidal bases, take the sum of the areas, and then add the areas of the four different sized rectangles that make up the lateral faces.

Area of front and back

Area of top

Area of left and right sides

Area of bottom

Surface Area

4. Determine the surface area after two square holes with a side length of m are drilled through the solid figure composed of two rectangular prisms.

Surface Area of Top Prism Before the Hole is Drilled: Area of top

Area of front and back

Area of sides

Surface Area of Bottom Prism Before the Hole is Drilled: Area of top

Area of bottom

Area of front and back
Surface Area of Interiors: Area of Interiors

Area of sides

Surface area

COMMON
5. The base of a right prism is shown below. Determine the surface area if the height of the prism is cm. Explain how you determined the surface area.

Take the sum of the areas of the two bases made up of two right triangles, and add to it the sum of the areas of the lateral faces made up by rectangles of different sizes.

Area of sides

Area of bases

Surface area

