Lesson 3: Solving for Unknown Angles Using Equations

Student Outcomes

- Students solve for unknown angles in word problems and in diagrams involving all learned angle facts.

Classwork

Opening Exercise (5 minutes)

In the following examples and exercises, students set up and solve an equation for the unknown angle based on the relevant angle relationships in the diagram. Encourage students to note the appropriate angle fact abbreviation for any step that depends on an angle relationship.

Five rays meet at a common vertex. In a complete sentence, describe the relevant angle relationships in the diagram. Set up and solve an equation to find the value of .

The sum of angles at a point is

> at a point

Example 2 (4 minutes)

Example 2
Four rays meet at a common vertex. In a complete sentence, describe the relevant angle relationships in the diagram.
Set up and solve an equation to find the value of. Find the measurements of angles and and the arc that
The sum of the degree measurements of , and a point
measures is
The measurement of
The measurement of

Exercise 2 (4 minutes)

Exercise 2

Four rays meet at a common vertex. In a complete sentence, describe the relevant angle relationships in the diagram. Set up and solve an equation to find the value of . Find the measurement of
, and are angles at a point and sum to

The measurement of

Example 3 (4 minutes)

is formed by adjacent angles and ; the measurement of is equal to the sum of the measurements of the adjacent angles. This is also true for measurement of , formed by adjacent angles and . is vertically opposite from and equal in measurement to
, add
, add
vert

The measurement of
The measurement of

Exercise 3 (4 minutes)

Exercise 3
Two lines meet at the common vertex of two rays. In a complete sentence, describe the relevant angle relationships in the diagram. Set up and solve an equation to find the value of . Find the measurements of angles and which The measurement of formed by adjacent angles and
is equal to the sum of the measurements of the adjacent angles. This is also true for measurement of , which is formed by adjacent angles and . is vertically opposite from and equal to .

$-\quad-\quad$ vert \quad add | | add |
| :--- | :--- |

The measurement of

The measurement of

The following examples are designed to highlight Mathematical Practice 7 by helping students to see the connection between an angle diagram and the equation used to model it. Solving equations with variables on both sides is a topic Grade 8 teachers may choose to show that solution method if they so choose.

Example 4 (6 minutes)

Example 4
Two lines meet at a point. Set up and solve an equation to find the value of .
Find the measurement of one of the vertical angles.

Students use information in the figure and a protractor to solve for .
i) Students will measure a angle as shown; the remaining portion of the angle must be (add).
ii) Students can use their protractor to find the measurement of and use this measurement to partition the other angle in the vertical pair.

As a check, students should substitute the measured value into each expression and evaluate; each angle of the vertical pair should equal the other. Students can

MP.

 also use their protractor to measure each angle of the vertical angle pair.With a modified figure, students can write an algebraic equation that they have the skills to solve:

Extension: The algebra steps above are particularly helpful as a stepping-stone in demonstrating how to solve the equation that takes care of the problem in one shot:

> vert
> Measurement of each angle in the vertical pair:

Students understand the first line of this solution because of their knowledge of vertical angles. In fact, the only line they are not familiar with is the second line of the solution, which is a skill that they learn in Grade 8. Showing sudents this solution is simply a preview.

Exercise 4 (4 minutes)

Students use information in the figure and a protractor to solve for
i) Students will measure a angle as shown; the remaining portion of the angle must be (add).
ii) Students can use their protractor to find the measurement of and use this measurement to partition the other angle in the vertical pair.

Students should perform a check as in Example 4 before solving an equation that matches the modified figure.

Exit Ticket (5 minutes)

Name \qquad Date \qquad

Lesson 3: Solving for Unknown Angles Using Equations

Exit Ticket

1. Two rays have a common vertex on a line. Set up and solve an equation to find the value of . Find the measurements of angles and

2. Two lines meet at the common vertex of two rays. Set up and solve an equation to find the value of . Find the measurements of angles and

Exit Ticket Sample Solutions

1. Two rays have a common vertex on a line. Set up and solve an equation to find the value of . Find the measurements of angles and on a line Cles)

The measurement of
The measurement of

Scaffolded solutions:

a. Use equation above.
b. The angle marked , the right angle, and the angle with measurement are angles on a line. Their measurements sum to
c. The answers seem reasonable because the measurement of is once is substituted, which is slightly smaller than a right angle, and the measurement of is , which is an acute angle.
2. Two lines meet at the common vertex of two rays. Set up and solve an equation to find the value of . Find the measurements of angles and vert

The measurement of
The measurement of

Problem Set Sample Solutions

Set up and solve an equation for the unknown angle based on the relevant angle relationships in the diagram. Add labels to diagrams as needed to facilitate their solutions. List the appropriate angle fact abbreviation for any step that depends on an angle relationship.

1. Two lines meet at a point. Set up and solve an equation to find the value of .
vert

2. Three lines meet at a point. Set up and solve an equation to find the value of . Is your answer reasonable? Explain how you know.

Let
vert
on a line
Since
The answers seem reasonable since they are similar in magnitude to the angle.
3. Two lines meet at the common vertex of two rays. Set up and solve an equation to find the values of and .

Scaffolding:

Students struggling to organize their solution may benefit from prompts such as the following:

- Write an equation to model this situation. Explain how your equation describes the situation. Solve and interpret the solution. Is it reasonable?

Scaffolded solutions:

a. Use equation above.
b. The angle marked , the angle with measurement , and the right angle are angles on a line. Their measurements sum to
c. The answers seem reasonable because once the values of and are substituted, it appears that the two angles (and) form a right angle. We know those two angles should form a right angle because the angle adjacent to it is a right angle.
4. Two lines meet at the common vertex of two rays. Set up and solve an equation to find the values of and .

> on a line
> on a line

5. Two lines meet a point. Find the measurement of a vertical angle. Is your answer reasonable? Explain how you know.
vert
A solution can include a modified diagram, as shown and the supporting algebra work:

The answer seems reasonable because a rounded value of
would make the numeric value of each expression and \quad, which are reasonable close for a check.

Solutions may also include the full equation and solution:
vert
6. Three lines meet at the vertex of a ray. Set up and solve an equation to find the value of .

Let and be the measurements of the indicated angles.

vert.
complementary
on a line

7. Three angles are at a point. The second angle is second angle.
a. Find the measurement of all three angles.

> at a point

Angle 1:

Angle 2:
Angle 3:
b. Compare the expressions you used for the three angles and their combined expression. Explain how they are equal and how they reveal different information about this situation.

By the commutative and associative laws,

is equal to

, which is equal to . The first expression, , shows the sum of
three unknown numbers, where the second is more than the first, and the third is more than the second. The expression shows the sum of three times an unknown number with .
8. Four adjacent angles are on a line. The measurements of the four angles are four consecutive even numbers. Determine the measurements of all four angles.
on a line
The four angle measures are: , , and .
9. Three angles are at a point. The ratio of the measurement of the second angle to the measurement of the first angle is . The ratio of the measurement of the third angle to

Scaffolding:

Teachers may need to review the term "consecutive" for students to successfully complete Problem Set 7.

Angle 1
Angle 2
Angle 3
10. Solve for and in the following diagram.
on a line
vert.

