Lesson 11: Angle Problems and Solving Equations

Student Outcomes

- Students use facts about supplementary, complementary, vertical, and adjacent angles in a multistep problem to write and solve simple equations for an unknown angle in a figure.

Lesson Notes

Lesson 11 continues where Lesson 10 ended and incorporates slightly more difficult problems. At the heart of each problem is the need to model the angle relationships in an equation, and then solve for the unknown angle. The diagrams are all drawn to scale; students should verify their answers by using a protractor to measure relevant angles.

Classwork

Opening Exercise (8 minutes)

Students describe the angle relationship in the diagram and set up and solve an equation that models it. Have students verify their answers by measuring the unknown angle with a protractor.

Opening Exercise

a. In a complete sentence, describe the angle relationship in the diagram. Write an equation for the angle relationship shown in the figure and solve for \boldsymbol{x}. Confirm your answers by measuring the angle with a protractor.

Note to Teacher:

You may choose or offer a choice of difficulty to students in the Opening Exercise.

The angles marked by $x^{\circ}, 90^{\circ}$, and 14° are angles on a line and have a sum of 180°.

$$
\begin{aligned}
x+90+14 & =180 \\
x+104 & =180 \\
x+104-104 & =180-104 \\
x & =76
\end{aligned}
$$

b. $\quad C D$ and $E F$ are intersecting lines. In a complete sentence, describe the angle relationship in the diagram. Write an equation for the angle relationship shown in the figure and solve for y. Confirm your answers by measuring the angle with a protractor.

The adjacent angles marked by y° and 51° together form the angle that is vertically opposite and equal to the angle measuring 147°.

$$
\begin{aligned}
y+51 & =147 \\
y+51-51 & =147-51 \\
y & =96
\end{aligned}
$$

Lesson 11:
Date:

Angle Problems and Solving Equations 10/30/14
c. In a complete sentence, describe the angle relationship in the diagram. Write an equation for the angle relationship shown in the figure and solve for b. Confirm your answers by measuring the angle with a protractor.

The adjacent angles marked by $59^{\circ}, 41^{\circ}, b^{\circ}, 65^{\circ}$, and 90° are angles at a point and together have a sum of 360°.

$$
\begin{aligned}
59+41+b+65+90 & =360 \\
b+255 & =360-255 \\
b & =105
\end{aligned}
$$

d. The following figure shows three lines intersecting at a point. In a complete sentence, describe the angle relationship in the diagram. Write an equation for the angle relationship shown in the figure and solve for z. Confirm your answers by measuring the angle with a protractor.
The angles marked by $\mathbf{z}^{\circ}, 158^{\circ}$, and z° are angles on a line and have a sum of 180°.

$$
\begin{aligned}
z+158+z & =180 \\
2 z+158 & =180 \\
2 z+158-158 & =180-158 \\
2 z & =22 \\
z & =11
\end{aligned}
$$

e. Write an equation for the angle relationship shown in the figure and solve for x. In a complete sentence, describe the angle relationship in the diagram. Find the measurements of $\angle E P B$ and $\angle C P A$. Confirm your answers by measuring the angle with a protractor.
$\angle C P A, \angle C P E$, and $\angle E P B$ are angles on a line and have a sum of 180°.

$$
\begin{aligned}
5 x+90+x & =180 \\
6 x+90 & =180 \\
6 x+90-90 & =180-90 \\
6 x & =90 \\
\left(\frac{1}{6}\right) 6 x & =\left(\frac{1}{6}\right) 90 \\
x & =15
\end{aligned}
$$

$\angle E P B=15^{\circ}$
$\angle C P A=5\left(15^{\circ}\right)=75^{\circ}$

Example 1 (4 minutes)

Example 1

The following figure shows three lines intersecting at a point. In a complete sentence, describe the angle relationship in the diagram. Write an equation for the angle relationship shown in the figure and solve for \boldsymbol{x}. Confirm your answers by measuring the angle with a protractor.

The angles $86^{\circ}, 68^{\circ}$, and the angle between them, which is vertically opposite and equal in measure to x, are angles on a line and have a sum of 180°.

$$
\begin{aligned}
86+x+68 & =180 \\
x+154 & =180 \\
x+154-154 & =180-154 \\
x & =26
\end{aligned}
$$

Exercise 1 (5 minutes)

Exercise 1

The following figure shows four lines intersecting at a point. In a complete sentence, describe the angle relationships in the diagram. Write an equation for the angle relationship shown in the figure and solve for x and y. Confirm your answers by measuring the angle with a protractor.
The angles $x^{\circ}, 25^{\circ}, y^{\circ}$, and 40° are angles on a line and have a sum of 180°; the angle marked y° is vertically opposite and equal to 96°.

$$
\left.\begin{array}{l}
y=96^{\circ}, \text { vert. } \angle s \\
x+25+(96)+40=180 \\
x+161
\end{array}\right)=180 .
$$

Example 2 (4 minutes)

Example 2

In a complete sentence, describe the angle relationships in the diagram. You may label the diagram to help describe the angle relationships. Write an equation for the angle relationship shown in the figure and solve for \boldsymbol{x}. Confirm your answers by measuring the angle with a protractor.

The angle formed by adjacent angles a° and b° is vertically opposite to the 77° angle. The angles x°, a°, and b° are adjacent angles that have a sum of 90° (since the adjacent angle is a right angle and together the angles are on a line).

$$
\begin{aligned}
x+77 & =90 \\
x+77-77 & =90-77 \\
x & =13
\end{aligned}
$$

Exercise 2 (4 minutes)

Exercise 2

In a complete sentence, describe the angle relationships in the diagram. Write an equation for the angle relationship shown in the figure and solve for x and y. Confirm your answers by measuring the angle with a protractor.

Angles \boldsymbol{x}° and y° have a sum of 90°; angles \boldsymbol{x}° and 27° have a sum of 90°.

$$
\begin{aligned}
x+27 & =90 \\
x+27-27 & =90-27 \\
x & =63 \\
(63)+y & =90 \\
63-63+y & =90-63 \\
y & =27
\end{aligned}
$$

Example 3 (5 minutes)

Example 3

In a complete sentence, describe the angle relationships in the diagram. Write an equation for the angle relationship shown in the figure and solve for x. Find the measures of $\angle J A H$ and $\angle G A F$. Confirm your answers by measuring the angle with a protractor.

The sum of the degree measurements of $\angle J A H, \angle G A H, \angle G A F$, and the arc that subtends $\angle J A F$ is 360°.

$$
\begin{aligned}
225+2 x+90+3 x & =360 \\
315+5 x & =360 \\
315-315+5 x & =360-315 \\
5 x & =45 \\
\left(\frac{1}{5}\right) 5 x & =\left(\frac{1}{5}\right) 45 \\
x & =9
\end{aligned}
$$

$$
m \angle J A H=2\left(9^{\circ}\right)=18^{\circ} \quad m \angle G A F=3\left(9^{\circ}\right)=27^{\circ}
$$

Exercise 3 (4 minutes)

Exercise 3
In a complete sentence, describe the angle relationships in the diagram. Write an equation for the angle relationship shown in the figure and solve for x. Find the measure of $\angle J K G$. Confirm your answers by measuring the angle with a protractor.

The sum of the degree measurements of $\angle L K J, \angle J K G, \angle G K M$, and the arc that subtends $\angle L K M$ is 360°.

$$
\begin{aligned}
5 x+24+x+90 & =360 \\
6 x+114 & =360 \\
6 x+114-114 & =360-114 \\
6 x & =246 \\
\left(\frac{1}{6}\right) 6 x & =\left(\frac{1}{6}\right) 246 \\
x & =41
\end{aligned}
$$

$m \angle J K G=(41)=41^{\circ}$

Example 4 (5 minutes)

Example 4

In the accompanying diagram, $\angle D B E$ is four times the measure of $\angle F B G$.
a. Label $\angle D B E$ as y° and $\angle F B G$ as x°. Write an equation that describes the relationship between $\angle D B E$ and $\angle F B G$.

$$
y=4 x
$$

b. Find the value of x.

$$
\begin{aligned}
50+x+4 x & =180 \\
50+5 x & =180 \\
5 x+50-50 & =180-50 \\
5 x & =130 \\
\left(\frac{1}{5}\right)(5 x) & =\left(\frac{1}{5}\right)(130) \\
x & =26
\end{aligned}
$$

c. Find the measures of $\angle F B G, \angle C B D, \angle A B F, \angle G B E$, and $\angle D B E$.
$m \angle F B G=26^{\circ}$
$m \angle C B D=26^{\circ}$
$m \angle A B F=4(26)=104^{\circ}$
$m \angle G B E=50^{\circ}$
$m \angle D B E=104^{\circ}$
d. What is the measure of $\angle A B G$? Identify the angle relationship used to get your answer.

$$
\begin{aligned}
& \angle A B G=\angle A B F+\angle F B G \\
& \angle A B G=104+26 \\
& \angle A B G=130
\end{aligned}
$$

$m \angle A B G=130^{\circ}$
To determine the measure of $\angle A B G$, you need to add the measures of adjacent angles $\angle A B F$ and $\angle F B G$.

Exit Ticket (6 minutes)

Angle Problems and Solving Equations 10/30/14

Name \qquad Date \qquad

Lesson 11: Angle Problems and Solving Equations

Exit Ticket

Write an equation for the angle relationship shown in the figure and solve for x. Find the measures of $\angle R Q S$ and $\angle T Q U$.

Exit Ticket Sample Solutions

Write an equation for the angle relationship shown in the figure and solve for x. Find the measures of $\angle R Q S$ and $\angle T Q U$.

$$
\begin{aligned}
3 x+90+4 x+221 & =360 \\
7 x+311 & =360 \\
7 x+311-311 & =360-311 \\
7 x & =49 \\
\left(\frac{1}{7}\right) 7 x & =\left(\frac{1}{7}\right) 49 \\
x & =7
\end{aligned}
$$

$m \angle R Q S=3\left(7^{\circ}\right)=21^{\circ}$
$m \angle T Q U=4\left(7^{\circ}\right)=28^{\circ}$

Problem Set Sample Solutions

In a complete sentence, describe the angle relationships in each diagram. Write an equation for the angle relationship(s) shown in the figure, and solve for the indicated unknown angle. You can check your answers by measuring each angle with a protractor.

1. Find the measures of $\angle E A F, \angle D A E$, and $\angle C A D$.
$\angle G A F, \angle E A F, \angle D A E$, and $\angle C A D$ are angles on a line and have a sum of 180°.

$$
\begin{aligned}
6 x+4 x+2 x+30 & =180 \\
12 x+30 & =180 \\
12 x+30-30 & =180-30 \\
12 x & =150 \\
x & =12.5 \\
m \angle E A F=2\left(12.5^{\circ}\right) & =25^{\circ} \\
m \angle D A E=4\left(12.5^{\circ}\right) & =50^{\circ} \\
m \angle C A D=6\left(12.5^{\circ}\right) & =75^{\circ}
\end{aligned}
$$

2. Find the measure of a.

Angles $a^{\circ}, 26^{\circ}, a^{\circ}$, and 126° are angles at a point and have a sum of 360°.

$$
\begin{aligned}
a+126+a+26 & =360 \\
2 a+152 & =360 \\
2 a+152-152 & =360-152 \\
2 a & =208 \\
\left(\frac{1}{2}\right) 2 a & =\left(\frac{1}{2}\right) 208 \\
a & =104
\end{aligned}
$$

3. Find the measures of x and y.

Angles y° and 65° and angles 25° and x° have a sum of 90°.

$$
\begin{aligned}
x+25 & =90 \\
x+25-25 & =90-25 \\
x & =65 \\
65+y & =90 \\
65+y & =90 \\
65-65+y & =90-65 \\
y & =25
\end{aligned}
$$

4. Find the measure of $\angle H A J$.

Adjacent angles x° and 15° together are vertically opposite from and are equal to angle 81°.

$$
\begin{aligned}
x+15 & =81 \\
x+15-15 & =81-15 \\
x & =66
\end{aligned}
$$

$m \angle H A J=66^{\circ}$

5. Find the measures of $\angle H A B$ and $\angle C A B$.

Adjacent angles $\angle C A B$ and $\angle H A B$ have a sum of the measurement of $\angle C A H$, which is vertically opposite from and equal to the measurement of $\angle D A E$.

$$
\begin{aligned}
2 x+3 x+70 & =180 \\
5 x & =110 \\
\left(\frac{1}{5}\right) 5 x & =\left(\frac{1}{5}\right) 110 \\
x & =22
\end{aligned}
$$

$m \angle H A B=3\left(22^{\circ}\right)=66^{\circ}$
$m \angle C A B=2\left(22^{\circ}\right)=44^{\circ}$
6. The measure of $\angle S P T=b^{\circ}$. The measure of $\angle T P R$ is five more than two times $\angle S P T$. The measure of $\angle Q P S$ is twelve less than eight times $\angle S P T$. Find the measures of $\angle S P T, \angle T P R$, and $\angle Q P S$.
$\angle Q P S, \angle S P T$, and $\angle T P R$ are angles on a line and have a sum of 180°.

$$
\begin{aligned}
(8 b-12)+b+(2 b+5) & =180 \\
11 b-7 & =180 \\
11 b-7+7 & =180+7 \\
11 b & =187 \\
\left(\frac{1}{11}\right) 11 b & =\left(\frac{1}{11}\right) 187 \\
b & =17
\end{aligned}
$$

$m \angle S P T=\left(17^{\circ}\right)=17^{\circ}$
$m \angle T P R=2\left(17^{\circ}\right)+5^{\circ}=39^{\circ}$
$m \angle Q P S=8\left(17^{\circ}\right)-12^{\circ}=124^{\circ}$
7. Find the measures of $\angle H Q E$ and $\angle A Q G$.
$\angle A Q G, \angle A Q H$, and $\angle H Q E$ are adjacent angles that have a sum of 90°.

$$
\begin{aligned}
2 y+21+y & =90 \\
3 y+21 & =90 \\
3 y+21-21 & =90-21 \\
3 y & =69 \\
\left(\frac{1}{3}\right) 3 y & =\left(\frac{1}{3}\right) 69 \\
y & =23
\end{aligned}
$$

$m \angle H Q E=2\left(23^{\circ}\right)=46^{\circ}$
$m \angle A Q G=\left(23^{\circ}\right)=23^{\circ}$

8. The measures of three angles at a point are in the ratio of $2: 3: 5$. Find the measures of the angles.

Angle $A=2 x$, Angle $B=3 x$, Angle $C=5 x$

$$
\begin{aligned}
2 x+3 x+5 x & =360 \\
10 x & =360 \\
\left(\frac{1}{10}\right) 10 x & =\left(\frac{1}{10}\right) 360 \\
x & =36
\end{aligned}
$$

Angle $A=2\left(36^{\circ}\right)=72^{\circ}$
Angle $B=3\left(36^{\circ}\right)=108^{\circ}$
Angle $C=5\left(36^{\circ}\right)=180^{\circ}$
9. The sum of the measures of two adjacent angles is 72°. The ratio of the smaller angle to the larger angle is $1: 3$. Find the measures of each angle.
Angle $A=x$, Angle $B=3 x$

$$
\begin{aligned}
x+3 x & =72 \\
4 x & =72 \\
\left(\frac{1}{4}\right)(4 x) & =\left(\frac{1}{4}\right)(72) \\
x & =18
\end{aligned}
$$

Angle $A=(18)=18^{\circ}$
Angle $B=3(18)=54^{\circ}$
10. Find the measures of $\angle C Q A$ and $\angle E Q B$.

$$
\begin{aligned}
4 x+5 x & =108 \\
9 x & =108 \\
\left(\frac{1}{9}\right) 9 x & =\left(\frac{1}{9}\right) 108 \\
x & =12
\end{aligned}
$$

$m \angle C Q A=5(12)=60^{\circ}$
$m \angle E Q B=4(12)=48^{\circ}$

