Lesson 5: Using the Identity and Inverse to Write

Equivalent Expressions

Student Outcomes

- Students recognize the identity properties of 0 and 1 and the existence of inverses (opposites and reciprocals) to write equivalent expressions.

Classwork

Opening Exercises (5 minutes)

Students work independently to rewrite numerical expressions recalling the definitions of opposites and reciprocals.

Opening Exercises

1. In the morning, Harrison checked the temperature outside to find that it was $-12^{\circ} \mathrm{F}$. Later in the afternoon, the temperature rose $12^{\circ} \mathrm{F}$. Write an expression representing the temperature change. What was the afternoon temperature?
$-12+12$; the afternoon temperature was $0^{\circ} F$.
2. Rewrite subtraction as adding the inverse for the following problems and find the sum.
a. 2-2
$2+(-2)=0$
b. $\quad-\mathbf{4}-(-4)$
$(-4)+4=0$
c. The difference of 5 and 5
$5-5=5+(-5)=0$
d. $\quad g-g$
$g+(-g)=0$
3. What pattern do you notice in Opening Exercises 1 and 2?

The sum of a number and its additive inverse is equal to zero.
4. Add or subtract.
a. $16+0$

16
b. 0 - 7
$0+(-7)=-7$
c. $-\mathbf{4 + 0}$
-4
d. $\mathbf{0}+\boldsymbol{d}$
d
e. What pattern do you notice in parts (a) through (d)?

The sum of any quantity and zero is equal to the value of the quantity.
5. Your younger sibling runs up to you and excitedly exclaims, "I'm thinking of a number. If I add it to the number 2 ten times, that is, $2+$ my number + my number + my number... and so on, then the answer is 2 . What is my number?" You almost immediately answer, "zero," but are you sure? Can you find a different number (other than zero) that has the same property? If not, can you justify that your answer is the only correct answer?

No, there is no other number. On a number line, 2 can be represented as a directed line segment that starts at 0 , ends at 2, and has length 2. Adding any other (positive or negative) number v to $\mathbf{2}$ is equivalent to attaching another directed line segment with length $|v|$ to the end of the first line segment for 2 :

If v is any number other than 0 , then the directed line segment that represents v will have to have some length, so $2+v$ will have to be a different number on the number line. Adding v again just takes the new sum further away from the point 2 on the number line.

Discussion (5 minutes)

Discuss the following questions and conclude the opening with definitions of opposite, additive inverse, and the identity property of zero.

- In Problem 1, what is the pair of numbers called?
- Opposites or additive inverses.
- What is the sum of a number and its opposite?
- It is always equal to 0 .
- In Problem 5, what is so special about 0?
- Zero is the only number that when added with another number, the result is that other number.

This property makes zero special among all the numbers. Mathematicians have a special name for zero, called the additive identity; they call the property the additive identity property of zero.

Example 1 (5 minutes)

As a class, write the sum and then write an equivalent expression by collecting like terms and removing parentheses when possible. State the reasoning for each step.

Example 1

Write the sum and then write an equivalent expression by collecting like terms and removing parentheses.
a. $\quad 2 x$ and $-2 x+3$
$2 x+(-2 x+3)$
$(2 x+(-2 x))+3$ Associative property, collect like-terms
$0+3$
Additive inverse
3
Additive identity property of zero
b. $\quad 2 x-7$ and the opposite of $2 x$
$2 x+(-7)+(-2 x)$
$2 x+(-2 x)+(-7) \quad$ Commutative property, associative property
$0+(-7)$
Additive inverse
-7 Additive identity property of zero
c. The opposite of $(5 x-1)$ and $5 x$
$-(5 x-1)+5 x$
$-1(5 x-1)+5 x \quad$ Taking the opposite is equivalent to multiplying by -1
$-5 x+1+5 x \quad$ Distributive property
$(-5 x+5 x)+1 \quad$ Commutative property, any order property
$0+1 \quad$ Additive inverse
1 Additive identity property of zero

Exercise 1 (10 minutes)

In pairs, students will take turns dictating how to write the sums while partners write what is being dictated. Students should discuss any discrepancies and explain their reasoning. Dialogue is encouraged.

Exercise 1

With a partner, take turns alternating roles as writer and speaker. The speaker verbalizes how to rewrite the sum and properties that justify each step as the writer writes what is being spoken without any input. At the end of each problem, discuss in pairs the resulting equivalent expressions.

Write the sum and then write an equivalent expression by collecting like terms and removing parentheses whenever possible.
a. $\quad-4$ and $4 b+4$
$-4+(4 b+4)$
$(-4+4)+4 b \quad$ Any order, any grouping
$0+4 b$
4b
Additive inverse
Additive identity property of zero
b. $\quad 3 x$ and $1-3 x$
$3 x+(1-3 x)$
$3 x+(1+(-3 x)) \quad$ Subtraction as adding the inverse
$(3 x+(-3 x))+1$
Any order, any grouping
$0+1$
Additive inverse
1
Additive identity property of zero
c. The opposite of $4 x$ and $-5+4 x$
$-4 x+(-5+4 x)$
$(-4 x+4 x)+(-5) \quad$ Any order, any grouping
$0+(-5)$
-5
Additive inverse
Additive identity property of zero
d. The opposite of $\mathbf{- 1 0 t}$ and $t-10 t$
$10 t+(t-10 t)$
$(10 t+(-10 t))+t \quad$ Any order, any grouping
$0+t$
Additive inverse
t
Additive identity property of zero
e. The opposite of $(-7-4 v)$ and $-4 v$
$-(-7-4 v)+(-4 v)$
$-1(-7-4 v)+(-4 v) \quad$ Taking the opposite is equivalent to multiplying by -1
$7+4 v+(-4 v) \quad$ Distributive property
$7+0 \quad$ Any grouping, additive inverse
$7 \quad$ Additive identity property of zero

Example 2 (5 minutes)

Students should complete the first five problems independently and then discuss as a class.

Example 2

- $\left(\frac{3}{4}\right) \times\left(\frac{4}{3}\right)=1$
- $4 \times \frac{1}{4}=1$
- $\frac{1}{9} \times 9=1$
- $\left(-\frac{1}{3}\right) \times-3=1$
- $\left(-\frac{6}{5}\right) \times\left(-\frac{5}{6}\right)=1$
- What are these pairs of numbers called?
- Reciprocals.
- What is another term for reciprocal?
- The multiplicative inverse.
- What happens to the sign of the expression when converting it to its multiplicative inverse?
- There is no change to the sign. For example, the multiplicative inverse of -2 is $\left(-\frac{1}{2}\right)$. The negative sign remains the same.
- What can you conclude from the pattern in the answers?
- The product of a number and its multiplicative inverse is equal to 1 .
- Earlier, we saw that 0 is a special number because it is the only number that when added to another number, results in that number again. Can you explain why the number 1 is also special?
- One is the only number that when multiplied with another number, the result is that number again.
- This property makes 1 special among all the numbers. Mathematicians have a special name for 1 , called the multiplicative identity; they call the property the multiplicative identity property of one.

As an extension, ask students if there are any other "special numbers" that they have learned. Yes: -1 has the property that multiplying a number by it is the same as taking the opposite of the number. Share with students that they are going to learn later in this module about another special number called pi.

As a class, write the product and then write an equivalent expression in standard form. State the properties for each step. After discussing questions, review the properties and definitions in the lesson summary emphasizing the multiplicative identity property of 1 and the multiplicative inverse.

Write the product and then write the expression in standard form by removing parentheses and combining like terms. Justify each step.

a. The multiplicative inverse of $\frac{1}{5}$ and $\left(2 x-\frac{1}{5}\right)$
$5\left(2 x-\frac{1}{5}\right)$
$5(2 x)-5 \cdot \frac{1}{5} \quad$ Distributive property
10x-1 Multiplicative inverses
b. The multiplicative inverse of 2 and $(2 x+4)$
$\left(\frac{1}{2}\right)(2 x+4)$
$\left(\frac{1}{2}\right)(2 x)+\left(\frac{1}{2}\right)(4) \quad$ Distributive property
$1 x+2 \quad$ Multiplicative inverses, multiplication
$x+2 \quad$ Multiplicative identity property of one
c. The multiplicative inverse of $\left(\frac{1}{3 x+5}\right)$ and $\frac{1}{3}$

$$
(3 x+5) \cdot \frac{1}{3}
$$

$3 x\left(\frac{1}{3}\right)+5\left(\frac{1}{3}\right) \quad$ Distributive property
$1 x+\frac{5}{3} \quad$ Multiplicative inverse
$x+\frac{5}{3} \quad$ Multiplicative identity property of one

Exercise 2 (10 minutes)

As in Exercise 1, have students work in pairs to rewrite the expressions, taking turns being the speaker and writer.

Exercise 2

Write the product and then write the expression in standard form by removing parentheses and combining like terms. Justify each step.
a. The reciprocal of 3 and $-6 y-3 x$

$$
\begin{array}{ll}
\left(\frac{1}{3}\right)(-6 y+(-3 x)) & \text { Rewrite subtraction as an addition problem } \\
\left(\frac{1}{3}\right)(-6 y)+\left(\frac{1}{3}\right)(-3 x) & \text { Distributive property } \\
-2 y-1 x & \text { Multiplicative inverse } \\
-2 y-x & \text { Multiplicative identity property of one }
\end{array}
$$

b. The multiplicative inverse of 4 and $4 h-20$
$\left(\frac{1}{4}\right)(4 h+(-20)) \quad$ Rewrite subtraction as an addition problem
$\left(\frac{1}{4}\right)(4 h)+\left(\frac{1}{4}\right)(-20) \quad$ Distributive property
$1 h+(-5) \quad$ Multiplicative inverse
h-5 Multiplicative identity property of one
c. The multiplicative inverse of $-\frac{1}{6}$ and $2-\frac{1}{6} j$
$(-6)\left(2+\left(-\frac{1}{6} j\right)\right) \quad$ Rewrite subtraction as an addition problem
$(-6)(2)+(-6)\left(-\frac{1}{6} j\right) \quad$ Distributive property
$-12+1 j \quad$ Multiplicative inverse
$-12+j \quad$ Multiplicative identity property of one

Closing (3 minutes)

- What are the other terms for opposites and reciprocals, and what are the general rules of their sums and products?
- Additive inverse and multiplicative inverse; the sum of additive inverses equals 0 ; the product of multiplicative inverses equals 1.
- What do the additive identity property of zero and the multiplicative identity property of one state?
- The additive identity property of zero states that zero is the only number that when added to another number, the result is again that number. The multiplicative identity property of one states that one is the only number that when multiplied with another number, the result is that number again.

Exit Ticket (5 minutes)

\qquad

Lesson 5: Using the Identity and Inverse to Write Equivalent

Expressions

Exit Ticket

1. Find the sum of $5 x+20$ and the opposite of 20 . Write an equivalent expression in standard form. Justify each step.
2. For $5 x+20$ and the multiplicative inverse of 5 , write the product and then write the expression in standard form, if possible. Justify each step.

Exit Ticket Sample Solutions

1. Find the sum of $5 x+20$ and the opposite of 20 . Write an equivalent expression in standard form. Justify each step.
$(5 x+20)+(-20)$
$5 x+(20+(-20)) \quad$ Associative property of addition
$5 x+0$
Additive inverse
$5 x$
Additive identity property of zero
2. For $5 x+20$ and the multiplicative inverse of 5 , write the product and then write the expression in standard form, if possible. Justify each step.
$(5 x+20)\left(\frac{1}{5}\right)$
$(5 x)\left(\frac{1}{5}\right)+20\left(\frac{1}{5}\right) \quad$ Distributive property
$1 x+4 \quad$ Multiplicative inverses, multiplication
$x+4 \quad$ Multiplicative identity property of one

Problem Set Sample Solutions

1. Fill in the missing parts.
a. The sum of $6 c-5$ and the opposite of $6 c$

$$
\begin{array}{ll}
\begin{array}{l}
(6 c-5)+(-6 c) \\
(6 c+(-5))+(-6 c)
\end{array} & \\
\begin{array}{l}
\text { Rewrite subtraction as addition } \\
6 c+(-6 c)+(-5) \\
0+(-5)
\end{array} & \text { Regrouping/any order (or commutative property of addition) } \\
& \text { Additive inverse } \\
& \text { Additive identity property of zero } \\
\hline
\end{array}
$$

b. The product of $-2 c+14$ and the multiplicative inverse of -2

$$
\begin{aligned}
& (-2 c+14)\left(-\frac{1}{2}\right) \\
& \frac{(-2 c)\left(-\frac{1}{2}\right)+(14)\left(-\frac{1}{2}\right)}{1 c-7} \\
& c-7
\end{aligned}
$$

Distributive property
Multiplicative inverse, multiplication

Adding the additive inverse is the same as subtraction
\qquad
2. Write the sum and then rewrite the expression in standard form by removing parentheses and collecting like terms.
a. $\quad 6$ and $p-6$
$6+(p-6)$
$6+(-6)+p$
$0+p$
\boldsymbol{p}
b. $\quad 10 w+3$ and -3
$(10 x+3)+(-3)$
$10 w+(3+(-3))$
$10 w+0$
$10 w$
c. $\quad-\boldsymbol{x}-11$ and the opposite of $\mathbf{- 1 1}$
$(-x+(-11))+11$
$-x+((-11)+(11))$
$-x+0$
$-x$
d. The opposite of $4 x$ and $3+4 x$
$(-4 x)+(3+4 x)$
$((-4 x)+4 x)+3$
$0+3$
3
e. $2 g$ and the opposite of $(1-2 g)$
$2 g+(-(1-2 g))$
$2 g+(-1)+2 g$
$2 g+2 g+(-1)$
$4 g+(-1)$
$4 g-1$
3. Write the product and then rewrite the expression in standard form by removing parentheses and collecting like terms.
a. $\quad 7 h-1$ and the multiplicative inverse of 7

$$
\begin{aligned}
& (7 h+(-1))\left(\frac{1}{7}\right) \\
& \left(\frac{1}{7}\right)(7 h)+\left(\frac{1}{7}\right)(-1) \\
& h-\frac{1}{7}
\end{aligned}
$$

b. The multiplicative inverse of $\mathbf{- 5}$ and $10 v-5$

$$
\begin{aligned}
& \left(-\frac{1}{5}\right)(10 v-5) \\
& \left(-\frac{1}{5}\right)(10 v)+\left(-\frac{1}{5}\right)(-5) \\
& -2 v+1
\end{aligned}
$$

c. $\quad 9-\boldsymbol{b}$ and the multiplicative inverse of 9

$$
\begin{aligned}
& (9+(-b))\left(\frac{1}{9}\right) \\
& \left(\frac{1}{9}\right)(9)+\left(\frac{1}{9}\right)(-b) \\
& 1-\frac{1}{9} b
\end{aligned}
$$

d. The multiplicative inverse of $\frac{1}{4}$ and $5 t-\frac{1}{4}$
$4\left(5 t-\frac{1}{4}\right)$
$4(5 t)+4\left(-\frac{1}{4}\right)$
$20 t-1$
e. The multiplicative inverse of $-\frac{1}{10 x}$ and $\frac{1}{10 x}-\frac{1}{10}$

$$
\begin{aligned}
& (-10 x)\left(\frac{1}{10 x}-\frac{1}{10}\right) \\
& (-10 x)\left(\frac{1}{10 x}\right)+(-10 x)\left(-\frac{1}{10}\right) \\
& -1+x
\end{aligned}
$$

4. Write the expressions in standard form.
a. $\quad \frac{1}{4}(4 x+8)$
$\frac{1}{4}(4 x)+\frac{1}{4}(8)$
$x+2$
b. $\quad \frac{1}{6}(r-6)$
$\frac{1}{6}(r)+\frac{1}{6}(-6)$
$\frac{1}{6} r-1$
c. $\frac{4}{5}(x+1)$
$\frac{4}{5}(x)+\frac{4}{5}(1)$
$\frac{4}{5} x+\frac{4}{5}$
d. $\frac{1}{8}(2 x+4)$
$\frac{1}{8}(2 x)+\frac{1}{8}(4)$
$\frac{1}{4} x+\frac{1}{2}$
e. $\frac{3}{4}(5 x-1)$
$\frac{3}{4}(5 x)+\frac{3}{4}(-1)$
$\frac{15}{4} x-\frac{3}{4}$
f. $\frac{1}{5}(10 x-5)-3$
$\frac{1}{5}(10 x)+\frac{1}{5}(-5)+(-3)$
$2 x+(-1)+(-3)$
$2 x-4$
