

Student Outcomes

Students examine the relationships created by special lines in triangles, namely medians.

Lesson Notes

In Lesson 30, we work with a specific set of lines in triangles, the medians. This is an extension of the work we did in Lesson 29, where we proved that a segment joining the midpoints of two sides of a triangle is parallel to and half the length of the third side, among other proofs.

Classwork

Opening Exercise (5 minutes)

Opening Exercise	
In $\triangle ABC$ at the right, D is the midpoint of \overline{AB} ; E is the midpoint of \overline{BC} , and F is the midpoint of \overline{AC} . Complete each statement below.	в
\overline{DE} is parallel to $\underline{\overline{AC}}$ and measures $\underline{\frac{1}{2}}$ the length of $\underline{\overline{AC}}$.	DE
\overline{DF} is parallel to \underline{BC} and measures $\underline{\frac{1}{2}}$ the length of \underline{BC} .	A F
\overline{EF} is parallel to \overline{AB} and measures $\frac{1}{2}$ the length of	AB.

Discussion (10 minutes)

Discussion

In the previous two lessons, we proved that (a) the midsegment of a triangle is parallel to the third side and half the length of the third side and (b) diagonals of a parallelogram bisect each other. We use both of these facts to prove the following assertion:

All medians of a triangle are <u>concurrent</u>. That is, the three medians of a triangle (the segments connecting each vertex to the midpoint of the opposite side) meet at a single point. This point of concurrency is called the <u>centroid</u>, or the center of gravity, of the triangle. The proof will also show a length relationship for each median: The length from the vertex to the centroid is <u>twice</u> the length from the centroid to the midpoint of the side.

Lesson 30: Special Lines in Triangles Date: 10/10/14

engage^{ny}

Example 1 (10 minutes)

Special Lines in Triangles

This work is licensed under a

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Date:

The three medians of a triangle are concurrent at the <u>centroid</u>, or the center of gravity. This point of concurrency divides the length of each median in a ratio of <u>2:1</u>; the length from the vertex to the centroid is <u>twice</u> the length from the centroid to the midpoint of the side.

Example 2 (5 minutes)

Example 3 (10 minutes)

Exit Ticket (5 minutes)

engage^{ny}

Date:

Lesson 30

M1

GEOMETRY

Name

Date

Lesson 30: Special Lines in Triangles

Exit Ticket

 \overline{DQ} , \overline{FP} , and \overline{RE} are all medians of $\triangle DEF$, and C is the centroid. DQ = 24, FC = 10, RC = 7. Find DC, CQ, FP, and CE.

 $\ensuremath{\mathbb{C}}$ 2014 Common Core, Inc. Some rights reserved. commoncore.org

Special Lines in Triangles 10/10/14

engage^{ny}

Exit Ticket Sample Solutions

Problem Set Sample Solutions

Ty is building a model of a hang glider using the template below. To place his supports accurately, Ty needs to locate the center of gravity on his model.		
1.	Use your compass and straightedge to locate the center of gravity on Ty's model.	
2.	Explain what the center of gravity represents on Ty's model.	
	The center of gravity is the centroid.	
3.	Describe the relationship between the longer and shorter sections of the line segments you drew as you located the center of gravity.	
	The centroid divides the length of each median in a ratio of 2: 1.	

Special Lines in Triangles 10/10/14

