Lesson 28: Properties of Parallelograms

Student Outcomes

- Students complete proofs that incorporate properties of parallelograms.

Lesson Notes

Throughout this module, we have seen the theme of building new facts with the use of established ones. We see this again in Lesson 28, where triangle congruence criteria are used to demonstrate why certain properties of parallelograms hold true. We begin establishing new facts using only the definition of a parallelogram and the properties we have assumed when proving statements. Students combine the basic definition of a parallelogram with triangle congruence criteria to yield properties taken for granted in earlier grades, such as opposite sides of a parallelogram are parallel.

Classwork

Opening Exercise (5 minutes)

Opening Exercise

1. If the triangles are congruent, state the congruence.

$$
\triangle A G T \cong \triangle M Y J
$$

2. Which triangle congruence criterion guarantees part 1 ?

AAS

3. $\overline{\boldsymbol{T G}}$ corresponds with:
$\overline{J Y}$

Discussion/Examples 1-7 (35 minutes)

Discussion

How can we use our knowledge of triangle congruence criteria to establish other geometry facts? For instance, what can we now prove about the properties of parallelograms?

To date, we have defined a parallelogram to be a quadrilateral in which both pairs of opposite sides are parallel. However, we have assumed other details about parallelograms to be true too. We assume that:

- Opposite sides are congruent.
- Opposite angles are congruent.
- Diagonals bisect each other.

Let us examine why each of these properties is true.

Example 1

If a quadrilateral is a parallelogram, then its opposite sides and angles are equal in measure. Complete the diagram and develop an appropriate Given and Prove for this case. Use triangle congruence criteria to demonstrate why opposite sides and angles of a parallelogram are congruent.

Example 2

If a quadrilateral is a parallelogram, then the diagonals bisect each other. Complete the diagram and develop an appropriate Given and Prove for this case. Use triangle congruence criteria to demonstrate why diagonals of a parallelogram bisect each other. Remember, now that we have proved opposite sides and angles of a parallelogram to be congruent, we are free to use these facts as needed (i.e., $A D=C B, A B=C D, \angle A \cong \angle C, \angle B \cong \angle D$).

Now we have established why the properties of parallelograms that we have assumed to be true are in fact true. By extension, these facts hold for any type of parallelogram, including rectangles, squares, and rhombuses. Let us look at one last fact concerning rectangles. We established that the diagonals of general parallelograms bisect each other. Let us now demonstrate that a rectangle has congruent diagonals.

Students may need a reminder that a rectangle is a parallelogram with four right angles.

Example 3

If the parallelogram is a rectangle, then the diagonals are equal in length. Complete the diagram and develop an appropriate Given and Prove for this case. Use triangle congruence criteria to demonstrate why diagonals of a rectangle are congruent. As in the last proof, remember to use any already proven facts as needed.

Given:
Rectangle GHIJ.

Prove: \quad Diagonals are equal in length, $G I=H J$.

Construction: Label the rectangle GHIJ. Mark opposite sides as parallel, and add small squares at the vertices to indicate 90° angles. Draw diagonal $G I$ and $H J$.

Proof:

Rectangle GHIJ
Given
$\boldsymbol{G} \boldsymbol{J}=\boldsymbol{I} \boldsymbol{H}$
Opposite sides of a parallelogram are equal in length
$\boldsymbol{G H}=\boldsymbol{G H}$
Reflexive property
$\angle J G H, \angle I H G$ are right angles Definition of a rectangle
$\Delta G H J \cong \triangle I H G$
SAS
$G I=H J$
Corresponding sides of congruent triangles are equal in length

Converse Properties: Now we examine the converse of each of the properties we proved. Begin with the property and prove that the quadrilateral is in fact a parallelogram.

Example 4

If the opposite angles of a quadrilateral are equal, then the quadrilateral is a parallelogram. Draw an appropriate diagram, and provide the relevant Given and Prove for this case.

Given: Quadrilateral $A B C D$ with $\mathrm{m} \angle A=\mathrm{m} \angle C, \mathrm{~m} \angle B=\mathrm{m} \angle D$.

Prove: Quadrilateral $A B C D$ is a parallelogram.

$$
\begin{aligned}
& \text { Construction: Label the quadrilateral } A B C D \text {. Mark opposite angles as congruent. } \\
& \text { Draw diagonal } B D \text {. Label } \angle A \text { and } \angle C \text { as } x^{\circ} \text {. Label the four angles } \\
& \text { created by } \overline{B D} \text { as } r^{\circ}, s^{\circ}, t^{\circ} \text {, and } u^{\circ} \text {. } \\
& \text { Proof: } \\
& \text { Quadrilateral } A B C D \text { with } \mathrm{m} \angle A=\mathrm{m} \angle C, \mathrm{~m} \angle B=\mathrm{m} \angle D \\
& \text { Given } \\
& \mathbf{m} \angle D=r+s, m \angle B=t+u \\
& r+s=t+u \\
& x+r+t=180, x+s+u=180 \\
& r+t=s+u \\
& r+t-(r+s)=s+u-(t+u) \\
& t-s=s-t \\
& t-s+(s-t)=s-t+(s-t) \\
& 0=2(s-t) \\
& 0=s-t \\
& s=t \\
& \boldsymbol{s}=\boldsymbol{t} \Rightarrow \boldsymbol{r}=\boldsymbol{u} \\
& \overline{A B}\|\overline{C D}, \overline{A D}\| \overline{B C} \\
& \text { Quadrilateral } A B C D \text { is a parallelogram } \\
& \text { Angle addition } \\
& \text { Substitution } \\
& \text { Angles in a triangle add up to } 180^{\circ} \\
& \text { Subtraction property of equality, substitution } \\
& \text { Subtraction property of equality } \\
& \text { Additive inverse property } \\
& \text { Addition property of equality } \\
& \text { Addition and subtraction properties of equality } \\
& \text { Division property of equality } \\
& \text { Addition property of equality } \\
& \text { Substitution and subtraction properties of equality } \\
& \text { If two lines are cut by a transversal such that a pair of } \\
& \text { alternate interior angles are equal in measure, then the lines } \\
& \text { are parallel } \\
& \text { Definition of a parallelogram } \\
& \text { If the opposite sides of a quadrilateral are equal, then the quadrilateral is a parallelogram. Draw an appropriate } \\
& \text { diagram, and provide the relevant Given and Prove for this case. } \\
& \text { Given: } \quad \text { Quadrilateral } A B C D \text { with } A B=C D, A D=B C \text {. } \\
& \text { Prove: Quadrilateral } A B C D \text { is a parallelogram. } \\
& \text { Construction: Label the quadrilateral } A B C D \text {, and mark opposite sides as } \\
& \text { equal. Draw diagonal } \overline{B D} \text {. } \\
& \text { Proof: } \\
& \text { Quadrilateral } A B C D \text { with } A B=C D, A D=C B \\
& \text { Given } \\
& B D=D B \\
& \text { Reflexive property } \\
& \triangle A B D \cong \triangle C D B \\
& \text { SSS } \\
& \angle A B D \cong \angle C D B, \angle A D B \cong \angle C B D \\
& \overline{A B}\|\overline{C D}, \overline{A D}\| \overline{C B} \\
& \text { Corresponding angles of congruent triangles are congruent } \\
& \text { If two lines are cut by a transversal and the alternate interior angles } \\
& \text { are congruent, then the lines are parallel } \\
& \text { Quadrilateral ABCD is a parallelogram } \\
& \text { Definition of a parallelogram }
\end{aligned}
$$

Example 6

If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram. Draw an appropriate diagram, and provide the relevant Given and Prove for this case. Use triangle congruence criteria to demonstrate why the quadrilateral is a parallelogram.

Given: \quad Quadrilateral $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ bisect each other.

Prove: \quad Quadrilateral $A B C D$ is a parallelogram.
Construction: Label the quadrilateral $A B C D$, and mark opposite sides as equal. Draw diagonals $\overline{A C}$ and $\overline{B D}$.

Proof:
Quadrilateral $A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ bisect each other
Given

$A E=C E, D E=B E$
Definition of a segment bisector
$\mathrm{m} \angle D E C=\mathrm{m} \angle B E A, \mathrm{~m} \angle A E D=\mathrm{m} \angle C E B$
Vertical angles are equal in measure
$\triangle D E C \cong \triangle B E A, \triangle A E D \cong \triangle C E B$
SAS
$\angle A B D \cong \angle C D B, \angle A D B \cong \angle C B D \quad$ Corresponding angles of congruent triangles are congruent
$\overline{A B}\|\overline{C D}, \overline{A D}\| \overline{C B} \quad$ If two lines are cut by a transversal such that a pair of alternate interior angles are congruent, then the lines are parallel
Quadrilateral $A B C D$ is a parallelogram
Definition of a parallelogram

Example 7

If the diagonals of a parallelogram are equal in length, then the parallelogram is a rectangle. Complete the diagram, and develop an appropriate Given and Prove for this case.

Given:	Parallelogram GHIJ with diagonals of equal length, $G I=H J$.
Prove:	$G H I J$ is a rectangle.

Construction: Label the quadrilateral GHIJ. Draw diagonals $\overline{G I}$ and $\overline{H J}$.
Proof:
Parallelogram GHIJ with diagonals of equal length, GI = HJ
$G J=J G, H I=I H$
Given
$G H=I J$
Reflexive property

$\Delta H J G \cong \triangle I G J, \Delta G H I \cong \Delta J I H$
Opposite sides of a parallelogram are congruent
$\mathrm{m} \angle G=\mathrm{m} \angle J, \mathrm{~m} \angle H=\mathrm{m} \angle I$
$\mathrm{m} \angle G+\mathrm{m} \angle J=180^{\circ}, \mathrm{m} \angle H+\mathrm{m} \angle I=180^{\circ}$
$2(\mathrm{~m} \angle G)=180^{\circ}, 2(\mathrm{~m} \angle H)=180^{\circ}$
$\mathrm{m} \angle G=90^{\circ}, \mathrm{m} \angle H=90^{\circ}$
$\mathrm{m} \angle G=\mathrm{m} \angle J=\mathrm{m} \angle H=\mathrm{m} \angle I=90^{\circ}$
GHIJ is a rectangle.

SSS
Corresponding angles of congruent triangles are equal in measure

If parallel lines are cut by a transversal, then interior angles on the same side are supplementary

Substitution property of equality
Division property of equality
Substitution property of equality
Definition of a rectangle

Exit Ticket (5 minutes)

Name \qquad Date \qquad

Lesson 28: Properties of Parallelograms

Exit Ticket

Given: Equilateral parallelogram $A B C D$ (i.e., a rhombus) with diagonals $\overline{A C}$ and $\overline{B D}$.
Prove: Diagonals intersect perpendicularly.

Exit Ticket Sample Solutions

Given: Equilateral parallelogram $A B C D$ (i.e., a rhombus) with diagonals $\overline{A C}$ and $\overline{B D}$.		
Prove: Diagonals intersect perpendicularly.		
Rhombus ABCD	Given	/
$A E=C E, D E=B E$	Diagonals of a parallelogram	
	bisect each other	
$A B=B C+C D=D A$	Definition of equilateral parallelogram	
$\triangle A E D \cong \triangle A E B \cong \triangle C E B \cong \triangle C E D$	sss	
$\mathrm{m} \angle A E D=\mathrm{m} \angle A E B=\mathrm{m} \angle B E C=\mathrm{m} \angle C E D$	Corr. angles of congruent trian	are equal in measure
$\mathrm{m} \angle A E D=\mathrm{m} \angle A E B=\mathrm{m} \angle B E C=\mathrm{m} \angle C E D=90^{\circ}$	Angles at a point sum to 360 each angle measures 90°.	ce all four angles are congruent,

Problem Set Sample Solutions

Use the facts you have established to complete exercises involving different types of parallelograms.

1. Given: $\overline{A B} \| \overline{C D}, A D=A B, C D=C B$.

$$
A D=A B, C D=C B
$$

Given

$A C=C A$
$\triangle A D C \cong \triangle C B A$
$A D=C B, A B=C D$
$A B=B C=C D=A D$
$A B C D$ is a rhombus

Reflexive property
SSS
Corresponding sides of congruent triangles are equal in length
Transitive property
Definition of a rhombus
2. Given: Rectangle $R S T U, M$ is the midpoint of $\overline{R S}$.

Prove: $\triangle U M T$ is isosceles.

Rectangle RSTU

$$
R U=S T
$$

$\angle R, \angle S$ are right angles
M is the midpoint of $R S$
$R M=S M$
$\triangle R M U \cong \triangle S M T$
$\overline{U M} \cong \overline{T M}$
$\triangle U M T$ is isosceles

Given
Opposite sides of a rectangle are congruent

Definition of a rectangle
Given
Definition of a midpoint
SAS
Corresponding sides of congruent triangles are congruent
Definition of an isosceles triangle
3. Given: $A B C D$ is a parallelogram, $\overline{R D}$ bisects $\angle A D C, \overline{S B}$ bisects $\angle C B A$.

Prove: $D R B S$ is a parallelogram.
$A B C D$ is a parallelogram;
Given
$\overline{R D}$ bisects $\angle A D C, \overline{S B}$ bisects $\angle C B A$
$A D=C B$
Opposite sides of a parallelogram are congruent
$\angle A \cong \angle C, \angle B \cong \angle D$
$\angle R D A \cong \angle R D S, \angle S B C \cong \angle S B R$
$\angle R D A+\angle R D S=\angle D, \angle S B C \cong \angle S B R=\angle B$
$\angle R D A+\angle R D A=\angle D, \angle S B C \cong \angle S B C=\angle B$
$2(\angle R D A)=\angle D, 2(\angle S B C)=\angle B$
$\angle R D A=\frac{1}{2} \angle D, \angle S B C=\frac{1}{2} \angle B$
$\angle R D A \cong \angle S B C$
$\triangle D A R \cong \triangle B C S$
$\angle D R A \cong \angle B S C$
$\angle D R B \cong \angle B S D$
DRBS is a parallelogram

Opposite angles of a parallelogram are congruent
Definition of angle bisector
Angle addition
Substitution
Addition
Division
Substitution
ASA
Corresponding angles of congruent triangles are congruent
Supplements of congruent angles are congruent
Opposite angles of quadrilateral DRBS are congruent
4. Given: $D E F G$ is a rectangle, $W E=Y G, W X=Y Z$.

Prove: $W X Y Z$ is a parallelogram.
$D E=F G, D G=F E$

DEFG is a rectangle;
$W E=Y G, W X=Y Z$
$D E=D W+W E ; F G=Y G+F Y$
$D W+W E=Y G+F Y$
$D W+Y G=Y G+F Y$
$D W=F Y$
$\mathrm{m} \angle D=\mathrm{m} \angle E=\mathrm{m} \angle F=\mathrm{m} \angle G=90^{\circ}$
$\triangle Z G Y, \triangle X E W$ are right triangles
$\Delta Z G Y \cong \triangle X E W$
$Z G=X E$
$D G=Z G+D Z ; F E=X E+F X$
$D Z=F X$
$\triangle D Z W \cong \triangle F X Y$
$Z W=X Y$
WXYZ is a parallelogram

Opposite sides of a rectangle are congruent

Given

Segment addition
Substitution
Substitution
Subtraction
Definition of a rectangle
Definition of right triangle
HL
Corresponding sides of congruent triangles are congruent
Partition property or segment addition
Subtraction property of equality
SAS
Corresponding sides of congruent triangles are congruent
Both pairs of opposite sides are congruent
5. Given: Parallelogram $A B F E, C R=D S$.

Prove: $B R=S E$.
$\mathrm{m} \angle B C R=\mathrm{m} \angle E D S$
If parallel lines cut by a transversal, then alternate interior angles are equal in measure
$\angle A B F \cong \angle F E A$
Opposite angles of a parallelogram are

$\angle C B R \cong \angle D E S \quad$ Supplements of congruent angles are congruent
$C R=D S$
Given
$\triangle C B R \cong \triangle D E S$
AAS
$B R=S E$
Corresponding sides of congruent triangles are equal in length

