

Student Outcomes

Students complete proofs requiring a synthesis of the skills learned in the last four lessons.

Classwork

Exercises 1-6 (40 minutes)

Exercises 1–6				
1.	Given: $AB = AC$, Prove: $SB = SC$.	RB = RC.		
	AB = AC, RB = RC		Given	
	AR = AR		Reflexive property	
	$\triangle ARC \cong \triangle ARB$		SSS C	
	$\mathbf{m} \angle ARC = \mathbf{m} \angle ARB$		Corresponding angles of congruent triangles are equal in measure	
	$\mathbf{m} \angle ARC + \mathbf{m} \angle SRC =$	$180, \mathbf{m} \angle ARB + \mathbf{m} \angle SRB = 180$	D Linear pairs form supplementary angles	
	$\mathbf{m} \angle SRC = \mathbf{m} \angle SRB$		Angles supplementary to either the same angle or to congruent angles are equal in measure	
	SR = SR		Reflexive property	
	$\triangle SRB \cong \triangle SRC$		SAS	
	SB = SC		Corresponding sides of congruent angles are equal in length	
2.	. Given: Square $ABCS \cong$ Square $EFGS$,			
	RAB, REF	2 		
	Prove: $\triangle ASR \cong I$		B	
	Square $ABCS \cong$ Square		\setminus \times /	
	AS = ES	Corresponding squares are eq	sides of congruent wal in length A	
	SR = SR	Reflexive prope	erty	
	$\angle BAS$ and $\angle FES$ are	right angles Definition of so	guare	
	∠BAS and ∠SAR form	n a linear pair Definition of lin	near pair	
	∠FES and ∠SER forn	n a linear pair Definition of lin	near pair Ř	
	$\angle SAR$ and $\angle SER$ are	right angles Two angles the are, therefore,	at are supplementary and congruent each measure 90° and right angles	
	\triangle <i>ASR</i> and \triangle <i>ESR</i> are	e right triangles Definition of right	ght triangle	
	$\triangle ASR \cong \triangle ESR$	HL		

Lesson 27: Triangle Congruency Proofs 10/10/14 Date:

216

GEOMETRY

3.	Given: $JK = JL, JX = JY.$	J
	Prove: $KX = LY$.	\wedge
	JX = JY	Given
	$m \angle JXY = m \angle JYX$	Base angles of an isosceles triangle are equal in measure
	$\mathbf{m} \angle JXK + \mathbf{m} \angle JXY = 180,$	
	$\mathbf{m} \angle JYL + \mathbf{m} \angle JYX = 180$	Linear pairs form supplementary $K \xrightarrow{X} Y \xrightarrow{Y} L$ angles.
	$\mathbf{m} \angle JXK + \mathbf{m} \angle JXY = \mathbf{m} \angle JYL + \mathbf{m} \angle JYX$	Substitution property of equality
	$\mathbf{m} \angle JXK + \mathbf{m} \angle JXY = \mathbf{m} \angle JYL + \mathbf{m} \angle JXY$	Substitution property of equality
	$\mathbf{m} \angle JXK = \mathbf{m} \angle JYL$	Angles supplementary to either the same angle or congruent angles are equal in measure
	JK = JL	Given
	$\mathbf{m} \angle \mathbf{K} = \mathbf{m} \angle \mathbf{L}$	Base angles of an isosceles triangle are equal in measure
	$\triangle JXK \cong \triangle JYL$	AAS
	KX = LY	Corresponding sides of congruent triangles are equal in length
4.	Given: $\overline{AD} \perp \overline{DR}, \overline{AB} \perp \overline{BR},$	A
	$\overline{AD}\cong\overline{AB}.$	
	Prove: $\angle DCR \cong \angle BCR$.	D
	$\overline{AD} \perp \overline{DR}, \overline{AB} \perp \overline{BR}$	Given
	$\triangle ADR$ and $\triangle ABR$ are right triangles	Definition of right triangle
	$\overline{AD} \cong \overline{AB}$	Given
	$\overline{AR}\cong\overline{AR}$	Reflexive property
	$\triangle ADR \cong \triangle ABR$	HL C
	$\angle ARD \cong ARB$	Corresponding angles of congruent triangles are congruent
	$\mathbf{m} \angle ARD + \mathbf{m} \angle DRC = 180,$	
	$\mathbf{m} \angle ARB + \mathbf{m} \angle BRC = 180$	Linear pairs form supplementary angles.
	$\mathbf{m} \angle ARD + \mathbf{m} \angle DRC = \mathbf{m} \angle ARB + \mathbf{m} \angle BRC$	Transitive property
	$\mathbf{m} \angle DRC = \mathbf{m} \angle BRC$	Angles supplementary to either the same angle or congruent angles are equal in measure
	$\overline{DR} \cong \overline{BR}$	Corresponding sides of congruent triangles are congruent
	$\overline{RC}\cong\overline{RC}$	Reflexive property
	$\triangle DRC \cong \triangle BRC$	SAS
	$\angle DRC \cong \angle BRC$	Corresponding angles of congruent triangles are congruent

COMMON CORE

Triangle Congruency Proofs 10/10/14

217

GEOMETRY

Exit Ticket (5 minutes)

Triangle Congruency Proofs 10/10/14

Name_____

Date_____

Lesson 27: Triangle Congruency Proofs

Exit Ticket

Given: *M* is the midpoint of *GR*, $\angle G \cong \angle R$.

Prove: $\triangle GHM \cong \triangle RPM$.

 $\ensuremath{\mathbb{C}}$ 2014 Common Core, Inc. Some rights reserved. commoncore.org

Triangle Congruency Proofs 10/10/14

engage^{ny}

Exit Ticket Sample Solutions

Problem Set Sample Solutions

Use your knowledge of triangle congruence criteria to write a proof for the following:			
In the figure $\overline{BE} \cong \overline{CE}$, $\overline{DC} \perp \overline{AB}$, $\overline{BE} \perp \overline{AC}$, prove $\overline{AE} \cong \overline{RE}$.			
	\mathcal{P}		
$\mathbf{m} \angle ERC = \mathbf{m} \angle BRD$	Vertical angles are equal in measure		
$\overline{DC} \perp \overline{AB}, \overline{BE} \perp \overline{AC}$	Given		
$\mathbf{m} \angle BDR = 90^\circ, \mathbf{m} \angle REC = 90^\circ$	Definition of perpendicular lines		
$\mathbf{m} \angle ABE = \mathbf{m} \angle RCE$	Sum of the angle measures in a triangle is 180°		
$\mathbf{m} \angle BAE = \mathbf{m} \angle BRD$	Sum of the angle measures in a triangle is 180°		
$\mathbf{m} \angle BAE = \mathbf{m} \angle ERC$	Substitution property of equality		
$\overline{BE}\cong\overline{CE}$	Given		
$\triangle BAE \cong \triangle CRE$	AAS		
$\overline{AE} \cong \overline{RE}$	Corresponding sides of congruent triangles are congruent		

Triangle Congruency Proofs 10/10/14

220