Lesson 27: Triangle Congruency Proofs

Student Outcomes

- Students complete proofs requiring a synthesis of the skills learned in the last four lessons.

Classwork

Exercises 1-6 (40 minutes)

Exercises 1-6

1. Given: $A B=A C, R B=R C$.

Prove: $\quad \boldsymbol{S B}=\boldsymbol{S C}$.
$A B=A C, R B=R C$
$A R=A R$
$\triangle A R C \cong \triangle A R B$
$\mathrm{m} \angle A R C=\mathrm{m} \angle A R B$

$\mathrm{m} \angle A R C+\mathrm{m} \angle S R C=180, \mathrm{~m} \angle A R B+\mathrm{m} \angle S R B=180$
$\mathrm{m} \angle S R C=\mathrm{m} \angle S R B$
$S R=S R$
$\triangle S R B \cong \triangle S R C$
Given
Reflexive property
SSS
Corresponding angles of congruent triangles are equal in measure

Linear pairs form supplementary angles
Angles supplementary to either the same angle or to congruent angles are equal in measure

Reflexive property
SAS
Corresponding sides of congruent angles are equal in length
2. Given: Square $A B C S \cong$ Square $E F G S$,
$\overleftrightarrow{R A B}, \overleftrightarrow{R E F}$
Prove: $\quad \triangle A S R \cong E S R$.

Square $A B C S \cong$ Square EFGS
$A S=E S$
$S R=S R$
$\angle B A S$ and $\angle F E S$ are right angles
$\angle B A S$ and $\angle S A R$ form a linear pair
$\angle F E S$ and $\angle S E R$ form a linear pair
$\angle S A R$ and $\angle S E R$ are right angles
$\triangle A S R$ and $\triangle E S R$ are right triangles
$\triangle A S R \cong \triangle E S R$

Given
Corresponding sides of congruent squares are equal in length

Reflexive property
Definition of square
Definition of linear pair
Definition of linear pair

Two angles that are supplementary and congruent each measure 90° and are, therefore, right angles

Definition of right triangle
HL
3. Given: $J K=J L, J X=J Y$.

Prove: $\quad K X=L Y$.
$J X=J Y$
$\mathrm{m} \angle J X Y=m \angle J Y X$
$\mathrm{m} \angle J X K+\mathrm{m} \angle J X Y=180$,
$\mathrm{m} \angle J Y L+\mathrm{m} \angle J Y X=\mathbf{1 8 0}$
$\mathrm{m} \angle J X K+\mathrm{m} \angle J X Y=\mathrm{m} \angle J Y L+\mathrm{m} \angle J Y X$
$\mathrm{m} \angle J X K+\mathrm{m} \angle J X Y=\mathrm{m} \angle J Y L+\mathrm{m} \angle J X Y$
$\mathrm{m} \angle J X K=\mathrm{m} \angle J Y L$
$J K=J L$
$\mathrm{m} \angle K=\mathrm{m} \angle L$
$\triangle J X K \cong \triangle J Y L$
$K X=L Y$
4. Given: $\overline{A D} \perp \overline{D R}, \overline{A B} \perp \overline{B R}$, $\overline{A D} \cong \overline{A B}$.
Prove: $\quad \angle D C R \cong \angle B C R$.
$\overline{A D} \perp \overline{D R}, \overline{A B} \perp \overline{B R}$
$\triangle A D R$ and $\triangle A B R$ are right triangles
$\overline{A D} \cong \overline{A B}$
$\overline{A R} \cong \overline{A R}$
$\triangle A D R \cong \triangle A B R$
$\angle A R D \cong A R B$
$\mathrm{m} \angle A R D+\mathrm{m} \angle D R C=180$,
$\mathrm{m} \angle A R B+\mathrm{m} \angle B R C=180$
$\mathrm{m} \angle A R D+\mathrm{m} \angle D R C=\mathrm{m} \angle A R B+\mathrm{m} \angle B R C$
$\mathrm{m} \angle D R C=\mathrm{m} \angle B R C$
$\overline{D R} \cong \overline{B R}$
$\overline{R C} \cong \overline{R C}$
$\triangle D R C \cong \triangle B R C$
$\angle D R C \cong \angle B R C$

Given
Base angles of an isosceles triangle are equal in measure

Linear pairs form supplementary
 angles.

Substitution property of equality
Substitution property of equality
Angles supplementary to either the same angle or congruent angles are equal in measure

Given
Base angles of an isosceles triangle are equal in measure
AAS
Corresponding sides of congruent triangles are equal in length

Given
Definition of right triangle
Given
Reflexive property
HL

Corresponding angles of congruent triangles are congruent

Linear pairs form supplementary angles.
Transitive property
Angles supplementary to either the same angle or congruent angles are equal in measure

Corresponding sides of congruent triangles are congruent
Reflexive property
SAS
Corresponding angles of congruent triangles are congruent
5. Given: $A R=A S, B R=C S$,
$\overline{R X} \perp \overline{A B}, \overline{S Y} \perp \overline{A C}$.
Prove: $\quad \boldsymbol{B X}=\boldsymbol{C Y}$.
$A R=A S$
$\mathrm{m} \angle A R S=m \angle A S R$
Given
Base angles of an isosceles triangle are equal in measure
$\mathrm{m} \angle A R S+\mathrm{m} \angle A R B=180$,
$\mathrm{m} \angle A S R+\mathrm{m} \angle A S C=180$
Linear pairs form supplementary angles
$\mathrm{m} \angle A R S+\mathrm{m} \angle A R B=\mathrm{m} \angle A S R+\mathrm{m} \angle A S C$
$\mathrm{m} \angle A R B=\mathrm{m} \angle A S C$
$B R=C S$
$\triangle A R B \cong \triangle A S C$
$\angle A B R \cong \angle A C S$
$\overline{R X} \perp \overline{A B}, \overline{S Y} \perp \overline{A C}$
$\mathrm{m} \angle R X B=90^{\circ}=\mathrm{m} \angle S Y C$
$\triangle B R X \cong \triangle S Y C$
$B X=C Y$

Transitive property
Subtraction
Given
SAS
Corresponding angles of congruent triangles are congruent Given

Definition of perpendicular line segments.
AAS
Corresponding sides of congruent triangles are equal in length
6. Given: $A X=B X, \mathrm{~m} \angle A M B=\mathrm{m} \angle A Y Z=90^{\circ}$.

Prove: $\quad N Y=N M$.
$A X=B X$
$\mathrm{m} \angle A M B=\mathrm{m} \angle A Y Z=90^{\circ}$
$\mathrm{m} \angle B X M=\mathrm{m} \angle A X Y$
$\triangle B X M \cong \triangle A X Y$
$B X+X Y=B Y, A X+X M=A M$
$X M=X Y$
$B Y=A M$
$\mathrm{m} \angle B Y N=90^{\circ}$
$\mathrm{m} \angle A M B+\mathrm{m} \angle A M N=180^{\circ}$
$\mathrm{m} \angle A M N=90^{\circ}$
$\mathrm{m} \angle M N Y=\mathrm{m} \angle M N Y$
$\triangle B Y N \cong \triangle A M N$
$N Y=N M$

Given
Given
Vertical angles are equal in measure

AAS

Segments add
Corresponding sides of congruent triangles are equal in length
Substitution property of equality
Vertical angles are equal in measure
Linear pairs form supplementary angles
Subtraction property of equality
Reflexive property
AAS
Corresponding sides of congruent triangles are equal in length

Exit Ticket (5 minutes)

Name \qquad

Lesson 27: Triangle Congruency Proofs

Exit Ticket

Given: $\quad M$ is the midpoint of $G R, \angle G \cong \angle R$.
Prove: $\quad \triangle G H M \cong \triangle R P M$.

Date \qquad

Exit Ticket Sample Solutions

Given: M is the midpoint of $G R, \angle G=\angle R$.
Prove: $\triangle G H M \cong \triangle R P M$.

$$
\begin{array}{ll}
M \text { is the midpoint of } G R & \text { Given } \\
\angle G \cong \angle R & \text { Given } \\
G M=R M & \text { Definition of midpoint } \\
\angle H M G \cong \angle P M R & \text { Vertical angles are congruent. } \\
\triangle G H M \cong \triangle R P M & \text { ASA }
\end{array}
$$

Problem Set Sample Solutions

$$
\begin{aligned}
& \text { Use your knowledge of triangle congruence criteria to write a proof for the following: } \\
& \text { In the figure } \overline{B E} \cong \overline{C E}, \overline{D C} \perp \overline{A B}, \overline{B E} \perp \overline{A C}, \text { prove } \overline{A E} \cong \overline{R E} . \\
& \mathrm{m} \angle E R C=\mathrm{m} \angle B R D \\
& \overline{D C} \perp \overline{A B}, \overline{B E} \perp \overline{A C} \\
& \mathrm{~m} \angle B D R=90^{\circ}, \mathrm{m} \angle R E C=90^{\circ} \\
& \mathrm{m} \angle A B E=\mathrm{m} \angle R C E \\
& \text { Vertical angles are equal in measure } \\
& \mathrm{m} \angle B A E=\mathrm{m} \angle B R D \\
& \mathrm{~m} \angle B A E=\mathrm{m} \angle E R C \\
& \overline{B E} \cong \overline{C E} \\
& \begin{array}{ll}
\text { Sum of the angle measures in a triangle } \\
\text { is } 180^{\circ}
\end{array} \\
& \triangle B A E \cong \triangle C R E \\
& \overline{A E} \cong \overline{R E}
\end{aligned} \begin{aligned}
& \text { Sum of the angle measures in a triangle is } 180^{\circ} \\
& \hline
\end{aligned}
$$

