

Student Outcome

• Students learn the precise definition of a translation and perform a translation by construction.

Lesson Notes

In Lesson 16, students precisely define translations and use the construction of a parallelogram to demonstrate how to apply a translation to a figure. The students then use vectors to describe the translations. This may be the first time many students have seen vectors, so some additional explanation may be needed (a vector is a directed line segment that has both length and direction).

Refer to Lesson 2 of Grade 8, Module 2 for supplementary materials on use of vectors, as well as on translations in general.

Classwork

Exploratory Challenge (5 minutes)

Exploratory Challenge

In Lesson 4, you completed a construction exercise that resulted in a pair of parallel lines (Problem 1 from the Problem Set). Now we examine an alternate construction.

Construct the line parallel to a given line *AB* through a given point *P*.

- 1. Draw circle *P*: Center *P*, radius *AB*.
- 2. Draw circle *B*: Center *B*, radius *AP*.
- 3. Label the intersection of circle *P* and circle *B* as *Q*.
- 4. Draw \overrightarrow{PQ} .

Note: Circles P and B intersect in two locations. Pick the intersection Q so that points A and Q are in opposite halfplanes of line PB.

The construction shows that $\angle ABP$ and $\angle QPB$ are equal, alternate interior angles. Hence, by the alternate interior angles converse, $\overrightarrow{PQ} \parallel \overrightarrow{AB}$.

Discussion (10 minutes)

Discussion
To perform a translation, we need to use the above construction. Let us investigate the definition of translation.
For vector \overrightarrow{AB} , the <i>translation along</i> \overrightarrow{AB} is the transformation $T_{\overrightarrow{AB}}$ of the plane defined as follows:
1. For any point P on the line AB, $T_{\overline{AB}}(P)$ is the point Q on \overleftrightarrow{AB} so that \overrightarrow{PQ} has the same length and the same direction as \overrightarrow{AB} , and
2. For any point <i>P</i> not on \overleftrightarrow{AB} , $T_{\overrightarrow{AB}}(P)$ is the point <i>Q</i> obtained as follows. Let <i>l</i> be the line passing through <i>P</i> and parallel to \overleftrightarrow{AB} . Let <i>m</i> be the line passing through <i>B</i> and parallel to line <i>AP</i> . The point <i>Q</i> is the intersection of <i>l</i> and <i>m</i> .
<i>Note:</i> The parallel line construction above shows a quick way to find the point <i>Q</i> in part 2 of the definition of translation!
In the figure to the right, quadrilateral <i>ABCD</i> has been translated the length and direction of vector $\overrightarrow{CC'}$. Notice that the distance and direction from each vertex to its corresponding vertex on the image are identical to that of $\overrightarrow{CC'}$.

Example 1 (8 minutes)

Lesson 16: Translations 10/15/14

Date:

В

 P_1

 P_2

Example 2 (8 minutes)

Use your compass and straightedge to apply $T_{\overrightarrow{AB}}$ to segment P_1P_2 .

Note: Use the steps from the Exploratory Challenge twice for this question, creating two lines parallel to \overrightarrow{AB} : one through P_1 and one through P_2 .

Lesson 16: Translations 10/15/14

Date:

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

127

Closing

Exit Ticket (5 minutes)

Name_____

Date

Lesson 16: Translations

Exit Ticket

Translate the image one unit down and three units right. Draw the vector that defines the translation.

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

Exit Ticket Sample Solutions

Problem Set Sample Solutions

Lesson 16: Translations Date: 10/15/14

GEOMETRY

Lesson 16

Lesson 16:TranslationsDate:10/15/14

GEOMETRY

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

