ด

Lesson 6: Identifying Proportional and Non-Proportional

Relationships in Graphs

Student Outcomes

- Students examine situations carefully to decide whether two quantities are proportional to each other by graphing on a coordinate plane and observing whether all the points would fall on a line that passes through the origin.
- Students study examples of relationships that are not proportional as well as those that are.

Classwork

Today's Exploratory Challenge is an extension of Lesson 5. You will be working in groups to create a table and graph, and identify whether the two quantities are proportional to each other.

Preparation (5 minutes)

Place students in groups of four. Hand out markers, poster paper, graph paper, and envelopes containing 5 ratios each. (Each group will have identical contents.) Have groups assign roles to its members: reader, recorder, etc.

- Have the recorder fold the poster paper in quarters and label as follows: Quad 1-Table, Quad 2-Problem, Quad 3-Graph, and Quad 4-Proportional or Not? Explanation.
- Instruct the reader to take out the contents of the envelope (located at the end of the lesson), and instruct the group to arrange the data in a table and on a graph.
- Instruct the reader to read the problem. The recorder should write the problem on the poster paper. Students use multiple methods to show whether the quantities represented in the envelope are proportional to each other.

Exploratory Challenge (20 minutes)

Give students 15 minutes to discuss the problem and record their responses onto the poster paper. For the last 5 minutes, have groups place their posters on the wall and circulate around the room looking for the groups that have the same ratios. Have groups with the same ratios identify and discuss the differences of their posters.

Gallery Walk (10 minutes)

In groups, have students observe each poster, write any thoughts on sticky notes and place them on the posters. Sample posters are provided below. Also, have students answer the following questions on their worksheets:

- Were there any differences found in groups that had the same ratios?
- Did you notice any common mistakes? How might they be fixed?
- Which posters were both visually attractive and informative?

Group 1 and 8			
Problem: A local frozen yogurt shop is known for their monster sundaes. Create a table, and then graph and explain if the quantities are proportional to each other.		Table:	
		Number of Toppings	Total Cost of Toppings (\$)
		4	0
		6	3
		8	6
		10	9
		12	12
Graph:		Explanation: Although the points appear on a line, the quantities are not proportional to each other because the line does not go through the origin. Each topping does not have the same unit cost.	

Group 2 and 7

Group 3 and 6

Group 4 and 5

Closing (5 minutes)

- Why make posters with others? Why not do this exercise in your student books?
- We can discuss with others and learn from their thought processes. When we share information with others, our knowledge is tested and questioned.
- What does it mean for a display to be both visually appealing and informative?
- For a display to be both visually appealing and informative, the reader should be able to find data and results fairly quickly and somewhat enjoyably.
- Suppose we invited people from another school, state, or country to walk through our gallery. What would they be able to learn about ratio and proportion from our posters?
- Hopefully, after looking through the series of posters, people can learn and easily determine for themselves if graphs represent proportional and non-proportional relationships.

Lesson Summary

Graphs of Proportional Relationships: The graph of two quantities that are proportional appear on a line that passes through the origin.

Exit Ticket (5 minutes)

\qquad

Lesson 6: Identifying Proportional and Non-Proportional

Relationships in Graphs

Exit Ticket

1. Which graphs in the gallery walk represented proportional relationships and which did not? List the group number. Proportional Relationship

Non-Proportional Relationship
2. What are the characteristics of the graphs that represent proportional relationships?
3. For the graphs representing proportional relationships, what does $(0,0)$ mean in the context of the given situation?

Exit Ticket Sample Solutions

1. Which graphs in the art gallery walk represented proportional relationships and which did not? List the group number.

Proportional Relationship	Non-Proportional Relationship	
	Group 1	Group 5
Group 7	Group 3	Group 6
	Group 4	Group 8

2. What are the characteristics of the graphs that represent proportional relationships?

Graphs of groups 2 and 7 appear on a line and go through the origin.
3. For the graphs representing proportional relationships, what does $(0,0)$ mean in the context of the situation?

For zero books sold, the library received zero dollars in donations.

Problem Set Sample Solutions

Sally's aunt put money in a savings account for her on the day Sally was born. The savings account pays interest for keeping her money in the bank. The ratios below represent the number of years to the amount of money in the savings account.

- After one year, the interest accumulated, and the total in Sally's account was \$312.
- After three years, the total was $\$ 340$. After six years, the total was $\$ 380$.
- After nine years, the total was \$430. After 12 years, the total amount in Sally's savings account was \$480.

Using the same four-fold method from class, create a table and a graph, and explain whether the amount of money accumulated and time elapsed are proportional to each other. Use your table and graph to support your reasoning.

Lesson 6: Date:

Identifying Proportional and Non-Proportional Relationships in Graphs 10/21/14

Ratios for Exploratory Challenge

Cut and place in labeled envelopes prior to instructional time.

Group 1 A local frozen yogurt shop is known for its monster sundaes to be shared by a group. The ratios represent the number of toppings to the total cost of the toppings. Create a table, and then graph and explain if the quantities are proportional to each other.	Group 2 The school library receives money for every book sold at the school's book fair. The ratios represent the number of books sold to the amount of money the library receives. Create a table, and then graph and explain if the quantities are proportional to each other.
4 to 0	
$6: 3$	
$8: 6$	
12 to 12	

Group 3 Your uncle just bought a hybrid car and wants to take you and your siblings camping. The ratios represent the number of gallons of gas remaining to the number of hours of driving. Create a table, and then graph and explain if the quantities are proportional to each other.
8 to 0
$4: 4$
After 1 hour of driving, there are 6 gallons of gas left in the tank.
2 to 7

Group 4

For a science project, Eli decided to study colonies of mold. He observed a piece of bread that was molding. The ratios represent the number of days passed to the number of colonies of mold on the bread. Create a table, and then graph and explain if the quantities are proportional to each other.

1 to 1

2 to 4
$3: 9$
$4: 16$

Twenty-five colonies were found on the $5^{\text {th }}$ day.

Group 5 For a science project, Eli decided to study colonies of mold. He observed a piece of bread that was molding. The ratios represent the number of days passed to the number of colonies of mold on the bread. Create a table, and then graph and explain if the quantities are proportional to each other.
1 to 1
2 to 4
$3: 9$
$4: 16$

Group 6 Your uncle just bought a hybrid car and wants to take you and your siblings camping. The ratios represent the number of gallons of gas remaining to the number of hours of driving. Create a table, and then graph and explain if the quantities are proportional to each other.
8 to 0
$4: 4$
After 1 hour of driving, there are 6 gallons of gas left in the tank.
2 to 7

| Group 7
 The school library
 receives money for
 every book sold at the
 school's book fair. The
 ratios represent the
 number of books sold
 to the amount of
 money the library
 receives. Create a
 table, and then graph
 and explain if the
 quantities are
 proportional to each
 other. |
| :--- | :--- |
| |
| 1 to 5 |
| 2 to 10 |

Group 8

A local frozen yogurt shop is known for its monster sundaes to be shared by a group. The ratios represent the number of toppings to the total cost of the toppings. Create a table, and then graph and explain if the quantities are proportional to each other.

4 to 0
$6: 3$

$$
8: 6
$$

The total cost of a 10topping sundae is $\$ 9$.

12 to 12

