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Lesson 16:  Graphing Quadratic Equations from the Vertex Form, 

Student Outcomes
Students graph simple quadratic equations of the form  (completed-square or vertex form), recognizing that  represents the vertex of the graph and use a graph to construct a quadratic equation in vertex form.
Students understand the relationship between the leading coefficient of a quadratic function and its concavity and slope and recognize that an infinite number of quadratic functions share the same vertex.

Lesson Notes
[bookmark: _GoBack]The Opening Exercise is set up so students get three different quadratic equations, and they are asked to analyze the similarities and differences in the structure of their equations and the corresponding graphs, which leads to a generalization about the graphs of quadratic equations of the form .  MP.7& MP.8
Scaffolding:  
· Recall:  What does the graph of a quadratic equation look like?
· Remind students that when calculating squares in their calculator, they need to watch out for a common error: 
.


Throughout this lesson, we use “” notation when we are talking about the equation that represents the function and “ when talking about the function itself.  It may be important to review the reason for using both notations and the difference between them.  Students will need a graphing calculator and graph paper for this lesson.

Classwork
Opening Exercise (5 minutes)Scaffolding:  
· For students who quickly grasp the horizontal shift implied in the Opening Exercise:  We already know how to move the vertex left and right.  How might we move it up and down?
· The function  is called the “parent function” for all quadratic functions and their graphs.


Opening Exercise
Graph the equations , , and on the interval   

Have students graph the equations , , and on the interval   You might have students graph the equations using the graphing calculator or graph paper. 
How are the graphs of these equations similar?  How are they different?
· The graphs look similar in that they have the same shape.  Point out that the graphs are all translations of each other.  They have different vertices:   has its vertex at , while  has its vertex at  and  has its vertex at 

Now consider the graph of .  Where would you expect this graph to be in relation to the other three?
· The graph of is units to the right of the graph of ,  units to the right of and  units to the right of 

Discussion (10 minutes)
Based on the Opening Exercise and the lessons in Module 3 (e.g., see horizontal translations in Module , Lesson ), students should be able to reason that replacing with  moves the vertex  units to the right (for a negative ) or the left (for a positive ) on the -axis.  Push further.  Allow students to discuss the following questions with their partner or small group before taking suggested answers from the class:  
Why do you think the graph moves to the right when we subtract a positive number from  inside the parentheses and to the left when we add?  
· As an example, let’s start with a quadratic with vertex location , giving us the equation:  .  After a horizontal translation,  the height of the vertex should remain the same, namely .  That means  at the vertex.  We are curious about where the new vertex is horizontally; that is, what -value will make the previous equation true.  This implies ; therefore, .  That means, after the translation , the vertex  is translated to , and the whole graph is translated  units to the right.  Since  is positive, the graph shifts to the right; if  were negative,  will read as plus a positive number, and the graph shifts to the left. 
Your teacher is  units tall and standing at the position  on a horizontal axis.  Is it possible to find a quadratic equation that looks just like  but that sits directly on top of your teacher’s head?Scaffolding:  
· Visual learners will benefit from experimenting with their graphing calculators to determine the effect of changing the values of  and  in equations of the form, .
· For now, let the leading coefficient equal .

With a partner, take five minutes and experiment to see if you can find the quadratic equation to represent this situation.  Use what we have already learned in earlier lessons and modules to help you get started.  Construct tables and draw graphs to verify your results.  Remind students that they performed vertical translations in Module 3, Lesson 17.
· Students should be able to discover that, in addition to moving the graph left or right by adding or subtracting within the parentheses (adjusting the horizontal position), they can move up and down by adding or subtracting outside the parentheses (adjusting the vertical position).
In the activity above, students model the situation using tables and graphs.  Then, they conclude that the graphs of the equations can move up or down by adding or subtracting a constant outside the parentheses.  MP.4


Exercises 1–2 (8 minutes)

Exercises 1–2
1. Without graphing, state the vertex for each of the following quadratic equations.
a. 

b. Scaffolding:
If students need more examples to reinforce this concept, have them compare the following graphs either on their graphing calculator or graph paper: 

Ask them to comment on how the three graphs are similar and how they are different. Hopefully, they will notice that all three have the same vertex, but some are stretched or shrunk vertically, and some open down rather than up.



c. 


2.  Write a quadratic equation whose graph will have the given vertex.
a. 


b. 


c. 


Discussion (6 minutes)
Review the problems above, and when discussing solutions for Exercise 2, ask the following:
Are these the only quadratic equations with graphs with these vertices?  Is there another way to write two equations that have the same vertex but are different?
Using the equation from Exercise 2(b), ask students to experiment with ways to change the graph without changing the vertex.  Encourage them to write equations, evaluate them using a table, and graph the results.
Students come to the conclusion that if we multiply the term  by some other number, we keep the vertex the same, but the graph experiences a vertical stretch or shrink, or in the case of a negative coefficient, the direction that the graph opens is reversed.
Verify that this is true by applying the same rule to the equation from Exercise 2(c).
Can we generalize and discuss the effect the leading coefficient, , has on the graph of ?  Compared to the graph when :
· The graph is shrunk vertically when . 
· The graph is stretched vertically when  or . 
· The graph opens up when  is positive. 
· The graph opens down when  is negative. 

Exploratory Challenge (8 minutes)
This application problem about rectangular area connects vertex form to a real-world context.  You may consider asking students to create the graph of the function in part (b) to connect the problem’s solution explicitly to the graph of a quadratic function.  To aid in comprehension of the problem, consider asking students to name some hypothetical lengths and widths of the pen given the -foot constraint (e.g.,  by ,  by , etc.).
Exploratory Challenge
Caitlin has  feet of material that can be used to make a fence.  Using this material, she wants to create a rectangular pen for her dogs to play in.  What dimensions will maximize the area of the pen?
2. Let  be the width of the rectangular pen in feet.  Write an expression that represents the length when the width is  feet.
 or 

e. Define a function  that describes the area,, in terms of the width,. 
 or 

f. Rewrite  in vertex form. 





g. What are the coordinates of the vertex?  Interpret the vertex in terms of the problem.
The vertex is located at .  Since the leading coefficient is negative, the function has a maximum.  The maximum value of the function is , which occurs when .  For this problem, this means that the maximum area is  square feet, which happens when the width is  feet.

h. What dimensions maximize the area of the pen?  Do you think this is a surprising answer?
The pen has the greatest area when the length and width are both  feet.  Students may or may not be surprised to note that this occurs when the rectangle is a  square.

Closing (3 minutes)
· How many quadratic equations are there whose graphs share a given vertex?
· There are infinitely many graphs that share a given vertex because there are an infinite number of values possible for the leading coefficient. Lesson Summary
When graphing a quadratic equation in vertex form, ,  are the coordinates of the vertex.



Exit Ticket (5 minutes) 


Name ___________________________________________________		Date____________________
Lesson 16:  Graphing Quadratic Equations from the Vertex Form, 

Exit Ticket

Compare the graphs of the function, and .  What do the graphs have in common?  How are they different?










Write two different equations representing quadratic functions whose graphs have vertices at 


Exit Ticket Sample Solutions

1. Compare the graphs of the function,   and .  What do the graphs have in common?  How are they different?
Both quadratic equations have their vertices at .  However, the graph of has less vertical stretch than the graph of , and the graph of  opens down, whereas the graph of  opens up.

4. Write two different quadratic equations whose graphs have vertices at   
  and  or any similar responses with different leading coefficients.


Problem Set Sample Solutions

1. Find the vertex of the graphs of the following quadratic equations.
a. 


b. 


6. Write a quadratic equation to represent a function with the following vertex.  Use a leading coefficient other than .
a. 


b. 


7. Use vocabulary from this lesson (i.e., stretch, shrink, opens up, opens down, etc.) to compare and contrast the graphs of the quadratic equations  and .
The quadratic equations share a vertex at , but the graph for the equation  opens down and has a vertical stretch, while the graph of the equation  opens up.
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