Lesson 19: Interpreting Correlation

Student Outcomes

- Students use technology to determine the value of the correlation coefficient for a given data set.
- Students interpret the value of the correlation coefficient as a measure of strength and direction of a linear relationship.
- Students explain why correlation does not imply causation.

Lesson Notes

This lesson introduces students to the correlation coefficient, a measure of the strength of a linear relationship between two numerical values. The focus of this lesson is on what the correlation coefficient (generally identified as r) tells us about the relationship between two numerical variables. Students use technology to determine the value of the correlation coefficient, or r. Instructions are provided in the teacher notes for using TI-83/84 graphing calculators. The instructions can be printed and distributed to students during the lesson.

It is important that whenever students evaluate whether or not two variables have a linear relationship, they do not interpret the correlation as causation. This lesson addresses several examples in which a correlation is noted, but the correlation does not indicate causation.

This lesson concludes the new content for the Algebra I statistics module. In the last lesson, students are expected to summarize at least one of the examples or exercises developed in this module in a poster or a class presentation. Students complete their current study of the fit of a linear model by using technology to interpret the correlation coefficient as an indication of the strength and direction of a linear relationship.

This is an extensive lesson. Several examples are provided to address varying strengths of linearity, along with positive and negative linear relationships. Students use technology, summary tables, and graphs to answer the questions. If it is a challenge to address the entire lesson in one class period, teachers should select problems that cover varying examples of the linear relationship between two variables. It may be necessary to spend more than one class period on this lesson.

It is not necessary for students to compute the correlation coefficient by hand, but if they want to know how this is done, you can share the formula for the correlation coefficient given below.

$$
r=\frac{\sum(x-\bar{x})}{\sqrt{\sum(x-\bar{x})^{2}} \sqrt{\sum(y-\bar{y})^{2}}}
$$

Classwork

Example 1 (2 minutes): Positive and Negative Linear Relationships
Read through Example 1 with students.

Example 1: Positive and Negative Linear Relationships
Linear relationships can be described as either positive or negative. Below are two scatter plots that display a linear relationship between two numerical variables x and y.

Scatter Plot 1

Exercises 1-4 (4 minutes)

Discuss and confirm Exercises 1-4 as a class.

Exercises 1-4

1. The relationship displayed in scatter plot 1 is a positive linear relationship. Does the value of the y-variable tend to increase or decrease as the value of x increases? If you were to describe this relationship using a line, would the line have a positive or negative slope?

Increase; positive slope.
2. The relationship displayed in scatter plot 2 is a negative linear relationship. As the value of one of the variables increases, what happens to the value of the other variable? If you were to describe this relationship using a line, would the line have a positive or negative slope?

The other variable decreases; negative slope.
3. What does it mean to say that there is a positive linear relationship between two variables?

A positive linear relationship indicates that as the values of one variable increase, the values of the other variable also tend to increase.
4. What does it mean to say that there is a negative linear relationship between two variables?

A negative linear relationship indicates that as the values of one variable increase, the values of the other variable tend to decrease.

Example 2 (2 minutes): Some Linear Relationships Are Stronger than Others

Introduce the scatter plots in the example. Ask the students:

- In your opinion, which plot has a stronger linear relationship?

> Example 2: Some Linear Relationships are Stronger than Others
> Below are two scatter plots that show a linear relationship between two numerical variables x and y.

Exercises 5-9 (4 minutes)

Let students work independently on Exercises 5-9. Then confirm as a class.

Exercises 5-9

5. Is the linear relationship in scatter plot 3 positive or negative?

Expect students to comment that this scatter plot is not as clear-cut as the previous examples. In general, there are more points in the scatter plot that describe a positive relationship.
6. Is the linear relationship in Scatter Plot 4 positive or negative?

This scatter plot also indicates a positive relationship. For most of the points, students note that as the x-values increase, the y-values also tend to increase.

Discuss Exercises 7-9 as a class. Allow for multiple responses.

It is also common to describe the strength of a linear relationship. We would say that the linear relationship in scatter plot 3 is weaker than the linear relationship in scatter plot 4.
7. Why do you think the linear relationship in scatter plot 3 is considered weaker than the linear relationship in scatter plot 4?

Students should comment on the general scatter of the points. The points in scatter plot 3 are more scattered and do not cluster tightly around a line, while in scatter plot 4, the points conform more closely to a line.
8. What do you think a scatter plot with the strongest possible linear relationship might look like if it is a positive relationship? Draw a scatter plot with five points that illustrates this.

A scatter plot that has all of the points on a line with a positive slope indicates the strongest possible positive linear relationship. Students should draw points that form a line with a positive slope. See example below.

9. How would a scatter plot that shows the strongest possible linear relationship that is negative look different from the scatter plot that you drew in the previous question?

A scatter plot with the strongest possible negative linear relationship would be one in which all of the points are on a line with a negative slope. This line has a negative slope, while the line drawn in Exercise 8 would have a positive slope.

Exercises 10-12 (4 minutes): Strength of Linear Relationships

Let students work on Exercises 10-12 in small groups.

Exercises 10-12: Strength of Linear Relationships
10. Consider the three scatter plots below. Place them in order from the one that shows the strongest linear relationship to the one that shows the weakest linear relationship.

Strongest		Weakest
Scatter Plot 7	Scatter Plot 6	Scatter Plot 5

11. Explain your reasoning for choosing the order in Exercise 10.

Students should imagine there is a least squares line in each plot. The strongest linear relationship has the smallest sum of the squares of the residuals while the weakest linear relationship has the largest sum of the squares of the residuals.
12. Which of the following two scatter plots shows the stronger linear relationship? (Think carefully about this one!)

The strength of the linear relationship is actually the same for each of these examples. The difference in the scatter plots, however, is that scatter plot 8 indicates a negative linear relationship, and scatter plot 9 indicates a positive relationship. (Note that it is important to discuss this response with students if the question is not answered correctly.)

Example 3 (4 minutes): The Correlation Coefficient

MP. 1 Analyze the scatter plots and correlation coefficients as a class. Ask the following as students view the plots:

- Is there a positive or negative relationship?
- Is the relationship strong or weak?

Example 3: The Correlation Coefficient
The correlation coefficient is a number between -1 and +1 (including -1 and +1) that measures the strength and direction of a linear relationship. The correlation coefficient is denoted by the letter r.

Several scatter plots are shown below. The value of the correlation coefficient for the data displayed in each plot is also given.

Exercises 13-15 (4 minutes)

Discuss Exercises $13-15$ as a class.

Exercises 13-15

13. When is the value of the correlation coefficient positive?

The correlation coefficient is positive when as the x-values increase, the y-values also tend to increase.
14. When is the value of the correlation coefficient negative?

The correlation coefficient is negative when as the x-values increase, the y-values tend to decrease.
15. Is the linear relationship stronger when the correlation coefficient is closer to 0 or to $\mathbf{1}$ (or $\mathbf{- 1}$)?

As the points form a stronger negative or positive linear relationship, the correlation coefficient gets farther from 0. Students note that when all of the points are on a line with a positive slope, the correlation coefficient is +1 . The correlation coefficient is $\mathbf{- 1}$ if all of the points are on a line with a negative slope.

Discuss the properties of the correlation coefficient with students. Find connections between the questions in this example and those properties.
$\begin{aligned} & \text { Looking at the scatter plots in Example 4, you should have discovered the following properties of the correlation } \\ & \text { coefficient: }\end{aligned}$

$$
\begin{array}{l}\text { Property 1: }\end{array}
$$

The sign of r (positive or negative) corresponds to the direction of the linear relationship.

Example 4 (4 minutes): Calculating the Value of the Correlation Coefficient

Explain to students that they will be using technology to calculate the correlation coefficient. Show students the steps for finding the correlation coefficient (r) by using whatever graphing calculator or statistical software is available to them. The following steps are included for a TI-84 Plus calculator. (These steps should be similar for other graphing calculators or statistics software, as well.) For this type of calculator, the diagnostics must be turned on. The value of r^{2} displayed may be unfamiliar to students. At this point, indicate to students that the role of r^{2} will be addressed in future statistics modules when they study the actual calculation of r and r^{2}.

Steps for calculating the correlation coefficient using a TI-84 Plus:

Step 1: Determine which variable represents x, and which variable represents y based on x - and y-variable designations.
Step 2: From the home screen, select STAT.
Step 3: Click ENTER from the Edit option of the menu.
Step 4: Enter the values of x in L1 and the values of y in L2.
Step 5: When complete, enter 2ND QUIT.
Step 6: Select STAT.
Step 7: With the arrows, move the top cursor over to the option CALC and move the down cursor to 8: LinReg $(a+b x)$, and then click ENTER.

Step 8: With $\operatorname{LinReg}(a+b x)$ on the screen, enter L1, L 2 and then ENTER.
Step 9: The value of r, the correlation coefficient, should appear on the screen.

Example 4: Calculating the Value of the Correlation Coefficient

There is an equation that can be used to calculate the value of the correlation coefficient given data on two numerical variables. Using this formula requires a lot of tedious calculations that will be discussed in later grades. Fortunately, a graphing calculator can be used to find the value of the correlation coefficient once you have entered the data.

Your teacher will show you how to enter data and how to use a graphing calculator to obtain the value of the correlation coefficient.

Here is the data from a previous lesson on shoe length in inches and height in inches for 10 men.

Shoe Length (x) (inches)	Height (y) (inches)
12.6	74
11.8	65
12.2	71
11.6	67
12.2	69
11.4	68
12.8	70
12.2	69
12.6	72
11.8	71

Exercises 16-17 (3 minutes)

Let students work independently on Exercises 16-17 and confirm answers with a neighbor. Assist students having difficulty with their calculators.

Exercises 16-17

16. Enter the shoe length and height data in your calculator. Find the value of the correlation coefficient between shoe length and height. Round to the nearest tenth.

Although it is not required to answer this question, you could encourage students to also examine the scatter plot of the data. The correlation coefficient is $r=0.6547298055$, or $r \approx 0.6$.

The table below shows how you can informally interpret the value of a correlation coefficient.

If the value of the correlation coefficient is between ...	You can say that ...
$r=1.0$	There is a perfect positive linear relationship.
$0.7 \leq r<1.0$	There is a strong positive linear relationship.
$0.3 \leq r<0.7$	There is a moderate positive linear relationship.
$0<r<0.3$	There is a weak positive linear relationship.
$r=0$	There is no linear relationship.
$-\mathbf{0 . 3}<r<0$	There is a weak negative linear relationship.
$-\mathbf{0 . 7}<r \leq-\mathbf{0 . 3}$	There is a moderate negative linear relationship.
$-1.0<r \leq-\mathbf{0 . 7}$	There is a strong negative linear relationship.
$r=-1.0$	There is a perfect negative linear relationship.

17. Interpret the value of the correlation coefficient between shoe length and height for the data given above.

Based on the table, there is a moderate positive linear relationship. Connecting this to the scatter plot provides an example of a moderate positive linear relationship.

Exercises 18-24 (6 minutes): Practice Calculating and Interpreting Correlation Coefficients

Let students work in small groups on Exercises 18-24.

Exercises 18-24: Practice Calculating and Interpreting Correlation Coefficients
Consumer Reports published a study of fast-food items. The table and scatter plot below display the fat content (in grams) and number of calories per serving for sixteen fast-food items.

Fat (g)	Calories (kcal)
2	268
5	303
3	260
3.5	300
1	315
2	160
3	200
6	320
3	420
5	290
3.5	285
2.5	390
0	140
2.5	330
1	120
3	180

Data Source: Consumer Reports
18. Based on the scatter plot, do you think that the value of the correlation coefficient between fat content and calories per serving will be positive or negative? Explain why you made this choice.

Positive since the general pattern is that as the fat content increases, the number of calories tends to increase.
19. Based on the scatter plot, estimate the value of the correlation coefficient between fat content and calories.

The scatter plot appears to have a positive correlation coefficient, but it also does not appear to be a strong relationship. As a result, students would indicate a moderate positive linear relationship, and might predict a value between 0.3 and 0.7.
20. Calculate the value of the correlation coefficient between fat content and calories per serving. Round to the nearest hundredth. Interpret this value.

The correlation coefficient is $r=0.4411658537$, or $r \approx 0.44$. It indicates a moderate positive linear relationship.

The Consumer Reports study also collected data on sodium content (in mg) and number of calories per serving for the same sixteen fast food items. The data is represented in the table and scatter plot below.

Sodium (mg)	Calories (kcal)
1042	268
921	303
250	260
970	300
1120	315
350	160
450	200
800	320
1190	420
570	290
1215	285
1160	390
520	140
1120	330
240	120
650	180

21. Based on the scatter plot, do you think that the value of the correlation coefficient between sodium content and calories per serving will be positive or negative? Explain why you made this choice.

Positive; as the sodium content increases, the number of calories tends to increase.
22. Based on the scatter plot, estimate the value of the correlation coefficient between sodium content and calories per serving.

This relationship appears to be stronger than the previous example. An estimate of the correlation coefficient is between 0.7 and 1.0.
23. Calculate the value of the correlation coefficient between sodium content and calories per serving. Round to the nearest hundredth. Interpret this value.
The correlation coefficient is $r=0.7862683297$, or $r \approx 0.79$. By the table, this indicates a strong positive linear relationship between sodium content and calories.
24. For these sixteen fast-food items, is the linear relationship between fat content and number of calories stronger or weaker than the linear relationship between sodium content and number of calories? Does this surprise you? Explain why or why not.

The linear relationship is stronger for the sodium content and calories. Answers will vary as to whether or not this would surprise a student. It is anticipated that many student would think the fat was more strongly correlated to the number of calories. A summary to help explain this is provided in the next example.

If there is enough time, ask students:

- Is there a connection between the slope of the least-squares line and the value of the correlation coefficient or r ? If yes, what is the connection?
- There is a connection regarding the sign of r (the correlation coefficient) and the sign of the slope if there is a linear relationship. If the least-squares line is increasing, the slope is positive and the value of the correlation coefficient, or r, is positive. If the least-squares line is decreasing, then the slope is negative and the value of the correlation coefficient is negative.
- Why is it important to know if a relationship is strong or weak?
- If a relationship is strong, then the data are close to the line, and the equation of the line can be used to predict values. If the relationship is weak, then the equation cannot be used as easily to predict values.

Example 5 (4 minutes): Correlation Does Not Mean There is a Cause-and-Effect Relationship Between

Variables

Students have a difficult time separating the concepts of correlation and causation. It is important to develop clear examples of causation for students to understand the difference.

Discuss the example provided in the text. This example shows the distinction between correlation and causation. Some students may see correlation as indicating a cause-and-effect relationship; therefore, it is important to teach them how to distinguish between the two (S-ID.C.9).

Example 5: Correlation Does Not Mean There is a Cause-and-Effect Relationship Between Variables

It is sometimes tempting to conclude that if there is a strong linear relationship between two variables that one variable is causing the value of the other variable to increase or decrease. But you should avoid making this mistake. When there is a strong linear relationship, it means that the two variables tend to vary together in a predictable way, which might be due to something other than a cause-and-effect relationship.

For example, the value of the correlation coefficient between sodium content and number of calories for the fast food items in the previous example was $r=0.79$, indicating a strong positive relationship. This means that the items with higher sodium content tend to have a higher number of calories. But the high number of calories is not caused by the high sodium content. In fact sodium does not have any calories. What may be happening is that food items with high sodium content also may be the items that are high in sugar or fat, and this is the reason for the higher number of calories in these items.

Similarly, there is a strong positive correlation between shoe size and reading ability in children. But it would be silly to think that having big feet causes children to read better. It just means that the two variables vary together in a predictable way. Can you think of a reason that might explain why children with larger feet also tend to score higher on reading tests?

Read through the last paragraph in the example and pose the question to students:

- Can you think of a reason that might explain why children with larger feet also tend to score higher on reading tests?
- As children get older, reading ability also tends to increase.

If students need more examples, discuss whether or not the following display a cause-and-effect relationship:

- As the amount of time spent studying increases, so do SAT scores.
- This is an example that is not a cause-and-effect relationship. Although the time of study might be associated to the SAT scores, the data are not collected from a statistical study that would investigate cause-and-effect. This should provoke an interesting discussion. While it could be argued that studying causes scores to increase, undoubtedly some will do well without studying, and some may study a lot and still score poorly.
- As the temperature increases in Florida, so do the number of shark attacks.
- This may not be a cause-and-effect relationship because the temperature is not "causing" the sharks to attack people.

Closing (1 minute)

Lesson Summary

- Linear relationships are often described in terms of strength and direction.
- The correlation coefficient is a measure of the strength and direction of a linear relationship.
- The closer the value of the correlation coefficient is to $\mathbf{+ 1}$ or $\mathbf{- 1}$, the stronger the linear relationship.
- Just because there is a strong correlation between the two variables does not mean there is a cause-and-effect relationship.

Exit Ticket (3 minutes)

Name \qquad Date \qquad

Lesson 19: Interpreting Correlation

Exit Ticket

The scatter plot below displays data on the number of defects per 100 cars and a measure of customer satisfaction (on a scale from 1 to 1000, with higher scores indicating greater satisfaction) for the 33 brands of cars sold in the United States in 2009.

Data Source: USA Today, June 16, 2010 and July 17, 2010
a. Which of the following is the value of the correlation coefficient for this data set: $r=-0.95, r=-0.24$, $r=0.83$, or $r=1.00$?
b. Explain why you selected this value.

Exit Ticket Sample Solutions

The scatter plot below displays data on the number of defects per 100 cars and a measure of customer satisfaction (on a scale from 1 to 1000, with higher scores indicating greater satisfaction) for the 33 brands of cars sold in the United States in 2009.

a. Which of the following is the value of the correlation coefficient for this data set: $r=-0.95, r=-0.24$,
$r=0.83$, or $r=1.00$?
$r=-0.24$
b. Explain why you selected this value.

Students' answers indicate that there is not a strong pattern of a linear relationship with this scatter plot. Students may struggle with an explanation based on weak relationship; however, there is a general pattern that as the number of defects increase, the satisfaction rating tends to decrease. As a result, students would estimate a weak negative association or a negative value of r close to zero. Based on the values provided, students would estimate $r=-0.24$.

Problem Set Sample Solutions

1. Which of the three scatter plots below shows the strongest linear relationship? Which shows the weakest linear relationship?

The strongest linear relationship would be scatter plot 3. The weakest linear relationship would be scatter plot 2.

Scatter Plot 1
Scatter Plot 2
Scatter Plot 3

CORE
2. Consumer Reports published data on the price (in dollars) and quality rating (on a scale of $\mathbf{0}$ to $\mathbf{1 0 0}$) for 10 different brands of men's athletic shoes.

Price (\$)	Quality Rating
65	71
45	70
45	62
80	59
110	58
110	57
30	56
80	52
110	51
70	51

a. Construct a scatter plot of these data using the grid provided.

b. Calculate the value of the correlation coefficient between price and quality rating and interpret this value. Round to the nearest hundredth.

The correlation coefficient is $r=-0.4167969135$, or $r=-0.42$, using a TI-84. This indicates a moderate negative relationship between price and quality rating. It indicates that as the price increases, quality rating tends to decrease.
c. Does it surprise you that the value of the correlation coefficient is negative? Explain why or why not.

It is anticipated that students will be surprised by this relationship. Students might think that as the price increases, the quality rating increases.
d. Is it reasonable to conclude that higher priced shoes are higher quality? Explain.

Based on this data, you would not necessarily assume that as the price increases, the quality tends to increase.
e. The correlation between price and quality rating is negative. Is it reasonable to conclude that increasing the price causes a decrease in quality rating? Explain.

No, just because there is a correlation between two variables does not mean that there is a cause-and-effect relationship between the two.
3. The Princeton Review publishes information about colleges and universities. The data below are for six public 4 -year colleges in New York. Graduation rate is the percentage of students who graduate within six years. Student-tofaculty ratio is the number of students per full-time faculty member.

School	Number of Full-Time Students	Student-to-Faculty Ratio	Graduation Rate
CUNY Bernard M Baruch College	11,477	17	63
CUNY Brooklyn College	9,876	15.3	48
CUNY City College	10,047	13.1	40
SUNY at Albany	14,013	19.5	64
SUNY at Binghamton	13,031	20	77
SUNY College at Buffalo	9,398	14.1	47

a. Calculate the value of the correlation coefficient between the number of full-time students and graduation rate. Round to the nearest hundredth.

Let $x=$ the number of full-time students and $y=$ the graduation rate. The correlation coefficient is $r \approx 0.8323156101$, or $r \approx 0.83$, using a TI-84.
b. Is the linear relationship between graduation rate and number of full-time students weak, moderate or strong? On what did you base your decision?
Based on the table presented in the lesson, the linear relationship between graduation rate and the number of full-time students is strong.
c. Is the following statement true or false? Based on the value of the correlation coefficient, it is reasonable to conclude that having a larger number of students at a school is the cause of a higher graduation rate.

False; it is not reasonable to assume a cause-and-effect. There are other factors that might also contribute to higher graduation rates, including the student-to-faculty ratio and admission standards of the school.
d. Calculate the value of the correlation coefficient between the student-to-faculty ratio and graduation rate. Round to the nearest hundredth.

Let $x=$ the student-to-faculty ratio and $y=$ the graduation rate. The correlation coefficient is $r=0.9523890762$, or $r \approx 0.95$, using a TI-84.
e. Which linear relationship is stronger: graduation rate and number of full-time students or graduation rate and student-to-faculty ratio? Justify your choice.

The stronger relationship is between graduation rate and student-to-faculty ratio. The correlation coefficient is greater in this case.

