ALGEBRA I

Lesson 26: Recursive Challenge Problem—The Double and Add 5

Game

The double and add 5 game is loosely related to the Collatz conjecture—an unsolved conjecture in mathematics named after Lothar Collatz, who first proposed the problem in 1937. The conjecture includes a recurrence relation, triple and add 1, as part of the problem statement. A worthwhile activity for you and your class is to read about the conjecture online.

Classwork

Example 1

Fill in the doubling and adding 5 below:

Number	Double and add 5
1	$1 \cdot 2 + 5 = 7$
7	

Exercise 1

Complete the tables below for the given starting number.

Number	Double and add 5
2	
_	

Number	Double and add 5
3	

ALGEBRA I

Lesson 26

Exercise 2

Given a starting number, double it and add 5 to get the result of round 1. Double the result of Round 1 and add 5, and so on. The goal of the game is to find the smallest starting whole number that produces a result of 100 or greater in three rounds or fewer.

Exercise 3

Using a generic initial value, a_0 , and the recurrence relation, $a_{i+1} = 2a_i + 5$, for $i \ge 0$, find a formula for a_1 , a_2 , a_3 , a_4 in terms of a_0 .

Vocabulary

<u>Sequence</u>: A sequence can be thought of as an ordered list of elements. The elements of the list are called the *terms of the sequence*.

<u>Recursive Sequence</u>: An example of a *recursive sequence* is a sequence that is defined by (1) specifying the values of one or more initial terms and (2) having the property that the remaining terms satisfy a recurrence relation that describes the value of a term based upon an algebraic expression in numbers, previous terms, or the index of the term.

The sequence generated by initial term, $a_1 = 3$, and recurrence relation, $a_n = 3a_{n-1}$, is the sequence (3, 9, 27, 81, 243, ...). Another example, given by the initial terms, $a_0 = 1$, $a_1 = 1$, and recurrence relation, $a_n = a_{n-1} + a_{n-2}$, generates the famed *Fibonacci sequence* (1, 1, 2, 3, 5, ...).

Lesson 26: Date: Recursive Challenge Problem—The Double and Add 5 Game 10/22/14

(cc) BY-NC-SA

ALGEBRA I

Problem Set

1. Write down the first 5 terms of the recursive sequences defined by the initial values and recurrence relations below:

a.
$$a_0 = 0$$
 and $a_{i+1} = a_i + 1$, for $i \ge 0$,

b.
$$a_1 = 1$$
 and $a_{i+1} = a_i + 1$, for $i \ge 1$,

c.
$$a_1 = 2$$
 and $a_{i+1} = a_i + 2$, for $i \ge 1$,

d.
$$a_1 = 3$$
 and $a_{i+1} = a_i + 3$, for $i \ge 1$,

e.
$$a_1 = 2$$
 and $a_{i+1} = 2a_i$, for $i \ge 1$,

f.
$$a_1 = 3$$
 and $a_{i+1} = 3a_i$, for $i \ge 1$,

g.
$$a_1 = 4$$
 and $a_{i+1} = 4a_i$, for $i \ge 1$,

h.
$$a_1 = 1$$
 and $a_{i+1} = (-1)a_i$, for $i \ge 1$,

i.
$$a_1 = 64$$
 and $a_{i+1} = (-\frac{1}{2})a_i$, for $i \ge 1$,

- 2. Look at the sequences you created in Problems 1(b) through 1(d). How would you define a recursive sequence that generates multiples of 31?
- 3. Look at the sequences you created in problems 1(e) through 1(g). How would you define a recursive sequence that generates powers of 15?
- 4. The following recursive sequence was generated starting with an initial value of a_0 , and the recurrence relation $a_{i+1} = 3a_i + 1$, for $i \ge 0$. Fill in the blanks of the sequence $(\underline{\hspace{1cm}}, \underline{\hspace{1cm}}, 94, \underline{\hspace{1cm}}, 850, \underline{\hspace{1cm}})$.
- 5. For the recursive sequence generated by initial value, a_0 , and recurrence relation, $a_{i+1} = a_i + 2$, for $i \ge 0$, find a formula for a_1 , a_2 , a_3 , a_4 in terms of a_0 . Describe in words what this sequence is generating.
- 6. For the recursive sequence generated by initial value, a_0 , and recurrence relation, $a_{i+1} = 3a_i + 1$, for $i \ge 0$, find a formula for a_1 , a_2 , a_3 , a_4 in terms of a_0 .

(cc) BY-NC-SA