Lesson 21: Solution Sets to Inequalities with Two Variables

Classwork

Exercise 1

a. Circle each ordered pair (x, y) that is a solution to the equation $4 x-y \leq 10$.
i. 3,2
2, 3
$-1,-14$
0,0
$1,-6$
$\begin{array}{llllll}\text { ii. } 5,10 & 0,-10 & 3,4 & 6,0 & 4,-1\end{array}$
b. Plot each solution as a point (x, y) in the coordinate plane.
c. How would you describe the location of the solutions in the coordinate plane?

Exercise 2

a. Discover as many additional solutions to the inequality $4 x-y \leq 10$ as possible. Organize your solutions by plotting each solution as a point (x, y) in the coordinate plane. Be prepared to share the strategies used to find your solutions.
b. Graph the line $y=4 x-10$. What do you notice about the solutions to the inequality $4 x-y \leq 10$ and the graph of the line $y=4 x-10$?
c. Solve the inequality for y.

d. Complete the following sentence:

If an ordered pair is a solution to $4 x-y \leq 10$, then it will be located \qquad
\qquad the line $y=4 x-10$.

Explain how you arrived at your conclusion.

Example 1

The solution to $x+y=20$ is shown on the graph below.
a. Graph the solution to $x+y \leq 20$.

c. Graph the solution to $x+y<20$.

b. Graph the solution to $x+y \geq 20$.

d. Graph the solution to $x+y>20$.

Exercises 3-5

3. Using a separate sheet of graph paper, plot the solution sets to the following equations and inequalities:
a. $x-y=10$
b. $x-y<10$
c. $y>x-10$
d. $y \geq x$
e. $x \geq y$
g. $y=5$
h. $y<5$
i. $\quad x \geq 5$
j. $\quad y \neq 1$
k. $x=0$
m. $\quad x>0$
n. $y<0$
o. $x^{2}-y=0$
p. $x^{2}+y^{2}>0$
q. $\quad x y \leq 0$

Which of the inequalities in this exercise are linear inequalities?

A half-plane is the graph of a solution set in the Cartesian coordinate plane of an inequality in two real number variables that is linear and strict.
4. Describe in words the half-plane that is the solution to each inequality.
a. $y \geq 0$
b. $x<-5$
c. $y \geq 2 x-5$
d. $\quad y<2 x-5$
5. Graph the solution set to $x<-5$, reading it as an inequality in one variable, and describe the solution set in words. Then graph the solution set to $x<-5$ again, this time reading it as an inequality in two variables, and describe the solution set in words.

Lesson Summary

An ordered pair is a solution to a two-variable inequality if, when each number is substituted into its corresponding variable, it makes the inequality a true number sentence.

Each ordered pair of numbers in the solution set of the inequality corresponds to a point on the coordinate plane. The set of all such points in the coordinate plane is called the graph of the inequality.

The graph of a linear inequality in the coordinate plane is called a half-plane.

Problem Set

1. Match each inequality with its graph. Explain your reasoning.
a. $2 x-y>6$
b. $y \leq 2 x-6$

c. $2 x<y+6$
d. $2 x-6 \leq y$

2. Graph the solution set in the coordinate plane. Support your answer by selecting two ordered pairs in the solution set and verifying that they make the inequality true.
a. $-10 x+y>25$

b. $\quad-6 \leq y$

c. $y \leq-7.5 x+15$

d. $\quad 2 x-8 y \leq 24$

e. $3 x<y$

f. $\quad 2 x>0$

3. Marti sells tacos and burritos from a food truck at the farmers market. She sells burritos for $\$ 3.50$ each and tacos for $\$ 2.00$ each. She hopes to earn at least $\$ 120$ at the farmers market this Saturday.
a. Identify three combinations of tacos and burritos that will earn Marti more than $\$ 120$.
b. Identify three combinations of tacos and burritos that will earn Marti exactly $\$ 120$.
c. Identify three combinations of tacos and burritos that will not earn Marti at least \$120.
d. Graph your answers to parts $(a-c)$ in the coordinate plane and then shade a half-plane that contains all possible solutions to this problem.
e. Create a linear inequality that represents the solution to this problem. Let x equal the number of burritos that Marti sells, and let y equal the number of tacos that Marti sells.
f. Are the points $(10,49.5)$ a solution to inequality you created in part (e)? Explain your reasoning.
