



# **Student Outcomes**

Students understand that the sum or difference of two polynomials produces another polynomial and relate polynomials to the system of integers; students add and subtract polynomials.

#### Classwork

# Exercise 1 (7 minutes)

Have students complete Exercise 1(a) and use it for a brief discussion on the notion of base. Then have students continue with the remainder of the exercise.

| Exercise 1 |                                                                                                                    |                                  |           |
|------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------|
| a.         | How many quarters, nickels, and pennies are needed to make $\$1.13?$                                               |                                  |           |
|            | Answers will vary.                                                                                                 |                                  |           |
|            | 4 quarters, 2 nickels, 3 pennies                                                                                   |                                  |           |
| b.         | Fill in the blanks:                                                                                                |                                  |           |
|            | $8,943 = \underline{8} \times 1000 + \underline{9} \times 100 + \underline{4} \times 10 + \underline{3} \times 1$  |                                  |           |
|            | $= \underline{8} \times 10^3 + \underline{9} \times 10^2 + \underline{4} \times 10 + \underline{3} \times 1$       |                                  |           |
| c.         | Fill in the blanks:                                                                                                |                                  |           |
|            | $8,943 = \underline{1} \times 20^3 + \underline{2} \times 20^2 + \underline{7} \times 20 + \underline{3} \times 1$ |                                  |           |
| d.         | Fill in the blanks:                                                                                                |                                  |           |
|            | $113 = \underline{4} \times 5^2 + \underline{2} \times 5 + \underline{3} \times 1$                                 | Extension:                       |           |
|            |                                                                                                                    | <ul> <li>Mayan, Azteo</li> </ul> | c, and    |
| sk:        |                                                                                                                    | Celtic all used                  | d base 20 |
| Why do we  | $x_{\rm M}$ is a base 102 W/by do we humans have a predilection for the number                                     | The word "sc                     | ore"      |
| 10?        | a se base to: why do we humans have a predilection for the humber                                                  | (which mean                      | s 20)     |

- Why do some cultures have base 20?
- How do you say "87" in French? How does the Gettysburg address begin?
  - Quatre-vingt-sept: 4-20s and 7; Four score and seven years ago...
- Computers use which base system?
  - Base 2

- originated from the Celtic language.
- Students could be . asked to research more on this and on the cultures who use or used base 5 and base 60.



Adding and Subtracting Polynomials 10/22/14







#### **Exercise 2 (5 minutes)**

In Exercise 2, we are laying the foundation that polynomials written in standard form are simply base x "numbers." The practice of filling in specific values for x and finding the resulting values lays a foundation for connecting this algebra of polynomial expressions with the later lessons on polynomial functions (and other functions) and their inputs and outputs.

Work through Exercise 2 with the class.

| Exercise 2                                                                                                            |    |                                                    |  |  |
|-----------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------|--|--|
| Now let's be as general as possible by not identifying which base we are in. Just call the base $x$ .                 |    |                                                    |  |  |
| Consider the expression $1 	imes x^3 + 2 	imes x^2 + 7 	imes x + 3 	imes 1$ , or equivalently $x^3 + 2x^2 + 7x + 3$ . |    |                                                    |  |  |
| a                                                                                                                     | a. | What is the value of this expression if $x = 10$ ? |  |  |
|                                                                                                                       |    | 1,273                                              |  |  |
| k                                                                                                                     | b. | What is the value of this expression if $x = 20$ ? |  |  |
|                                                                                                                       |    | 8,943                                              |  |  |

Point out that the expression we see here is just the generalized form of their answer from part (b) of Exercise 1. However, as we change x, we get a different number each time.

#### Exercise 3 (10 minutes)

Allow students time to complete Exercise 3 individually. Then elicit responses from the class.





Adding and Subtracting Polynomials

Date:

Point out, as highlighted by Exercises 1 and 3, that carrying is not necessary in this type of expression (polynomial expressions). For example,  $4x^2 + 17x + 2$  is a valid expression. However, in base ten arithmetic, coefficients of value ten or greater are not conventional notation. Setting x = 10 in  $4x^2 + 17x + 2$  yields 4 hundreds, 17 tens, and 2 ones, which is to be expressed as 5 hundreds, 7 tens, and 2 ones.

# **Discussion (11 minutes)**

The next item in your student materials is a definition for a polynomial expression. Read the definition carefully, and then create 3 polynomial expressions using the given definition.

Polynomial Expression: A polynomial expression is either

- 1. A numerical expression or a variable symbol, or
- 2. The result of placing two previously generated polynomial expressions into the blanks of the addition operator (\_\_+\_\_) or the multiplication operator (\_\_×\_\_).
- Compare your polynomial expressions with a neighbor's. Do your neighbor's expressions fall into the category of polynomial expressions?

Resolve any debates as to whether a given expression is indeed a polynomial expression by referring back to the definition and discussing as a class.

 Note that the definition of a polynomial expression includes subtraction (add the additive inverse instead), dividing by a non-zero number (multiply by the multiplicative inverse instead), and even exponentiation by a non-negative integer (use the multiplication operator repeatedly on the same numerical or variable symbol).

List several of the student-generated polynomials on the board. Include some that contain more than one variable.

Initiate the following discussion, presenting expressions on the board when relevant.

- Just as the expression  $(3 + 4) \cdot 5$  is a numerical expression but not a number,  $(x + 5) + (2x^2 x)(3x + 1)$  is a polynomial expression but not technically a **polynomial**. We reserve the word *polynomial* for polynomial expressions that are written simply as a sum of monomial terms. This begs the question: What is a monomial?
- A <u>monomial</u> is a polynomial expression generated using only the multiplication operator (\_\_\_\_\_\_). Thus, it does not contain + or operators.
- Just as we would not typically write a number in factored form and still refer to it as a number (we might call it a number in factored form), similarly, we do not write a monomial in factored form and still refer to it as a monomial. We multiply any numerical factors together and condense multiple instances of a variable factor using (whole number) exponents.
- Try creating a monomial.
- Compare the monomial you created with your neighbor's. Is your neighbor's expression really a monomial? Is it written in the standard form we use for monomials?
- There are also such things as binomials and trinomials. Can anyone make a conjecture about what a binomial is and what a trinomial is and how they are the same or different from a polynomial?

Adding and Subtracting Polynomials 10/22/14



Lesson 8

ALGEBRA I



Students may conjecture that a binomial has two of something and that a trinomial three of something. Further, they might conjecture that a polynomial has many of something. Allow for discussion and then state the following:

- A binomial is the sum (or difference) of two monomials. A trinomial is the sum (or difference) of three monomials. A polynomial, as stated earlier, is the sum of one or more monomials.
- The *degree* of a monomial is the sum of the exponents of the variable symbols that appear in the monomial.
- The <u>degree of a polynomial</u> is the degree of the monomial term with the highest degree.
- While polynomials can contain multiple variable symbols, most of our work with polynomials will be with polynomials in one variable.
- What do polynomial expressions in one variable look like? Create a polynomial expression in one variable and compare with your neighbor.

Post some of the student generated polynomials in one variable on the board.

- Let's relate polynomials to the work we did at the beginning of the lesson.
- Is this expression an integer in base 10? 10 100 + 22 2 + 3 10 + 8 2(2)
- Is the expression equivalent to the integer 1,234?
- How did we find out?
- We rewrote the first expression in our standard form, right?
- Polynomials in one variable have a standard form as well. Use your intuition of what standard form of a
  polynomial might be to write this polynomial expression as a polynomial in standard form:
  - $2x x^2 3x + 1 (x^3 + 2)$  and compare your result with your neighbor.
    - Students should arrive at the answer  $x^3 6x^2 + 2x 2$ .

Confirm that in standard form, we start with the highest degreed monomial, and continue in descending order.

- The <u>leading term</u> of a polynomial is the term of highest degree that would be written first if the polynomial is put into standard form. The <u>leading coefficient</u> is the coefficient of the leading term.
- What would you imagine we mean when we refer to the **constant term** of the polynomial?
  - A constant term is any term with no variables. To find "the constant" term of a polynomial, be sure you have combined any and all constant terms into one single numerical term, written last if the polynomial is put into standard form. Note that a polynomial does not have to have a constant term (or could be said to have a constant term of 0).

As an extension for advanced students, assign the task of writing of a formal definition for *standard form* of a polynomial. The formal definition is provided below for your reference:

A polynomial expression with one variable symbol x is in **standard form** if it is expressed as,  $a_n x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ , where n is a non-negative integer, and  $a_0, a_1, a_2, \ldots, a_n$  are constant coefficients with  $a_n \neq 0$ . A polynomial expression in x that is in standard form is often called a *polynomial in x*.



Adding and Subtracting Polynomials 10/22/14







#### Exercise 4 (5 minutes)

| Exercise 4                                                         |                                                                                                                                                                                                   |  |  |  |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Find each sum or difference by combining the parts that are alike. |                                                                                                                                                                                                   |  |  |  |
| а.                                                                 | $417 + 231 = \underline{4} \text{ hundreds} + \underline{1} \text{ tens} + \underline{7} \text{ ones} + \underline{2} \text{ hundreds} + \underline{3} \text{ tens} + \underline{1} \text{ ones}$ |  |  |  |
|                                                                    | = <u>6</u> hundreds + <u>4</u> tens + <u>8</u> ones                                                                                                                                               |  |  |  |
| b.                                                                 | $(4x^2 + x + 7) + (2x^2 + 3x + 1)$                                                                                                                                                                |  |  |  |
|                                                                    | $6x^2+4x+8$                                                                                                                                                                                       |  |  |  |
| с.                                                                 | $3x^3 - x^2 + 8 - (x^3 + 5x^2 + 4x - 7)$                                                                                                                                                          |  |  |  |
|                                                                    | $2x^3 - 6x^2 - 4x + 15$                                                                                                                                                                           |  |  |  |
| d.                                                                 | $3 x^3 + 8x - 2(x^3 + 12)$                                                                                                                                                                        |  |  |  |
|                                                                    | $x^3 + 24x - 24$                                                                                                                                                                                  |  |  |  |
| e.                                                                 | $5-t-t^2 + 9t + t^2$                                                                                                                                                                              |  |  |  |
|                                                                    | 8t + 5                                                                                                                                                                                            |  |  |  |
| f.                                                                 | 3p+1 + 6 p - 8 - (p + 2)                                                                                                                                                                          |  |  |  |
|                                                                    | 8p - 49                                                                                                                                                                                           |  |  |  |

# **Closing (3 minutes)**

- How are polynomials analogous to integers?
  - While integers are in base 10, polynomials are in base *x*.
- If you add two polynomials together, is the result sure to be another polynomial? The difference of two polynomials?
  - Students will likely reply, "yes," based on the few examples and their intuition.
- Are you sure? Can you think of an example where adding or subtracting two polynomials does not result in a polynomial?
  - Students thinking about  $x^2 x^2 = 0$  could suggest not. At this point, review the definition of a polynomial. Constant symbols are polynomials.









#### **Lesson Summary**

A <u>monomial</u> is a polynomial expression generated using only the multiplication operator ( $\_\times\_$ ). Thus, it does not contain + or - operators. Monomials are written with numerical factors multiplied together and variable or other symbols each occurring one time (using exponents to condense multiple instances of the same variable).

A polynomial is the sum (or difference) of monomials.

The *degree* of a monomial is the sum of the exponents of the variable symbols that appear in the monomial.

The <u>degree of a polynomial</u> is the degree of the monomial term with the highest degree.

#### **Exit Ticket (4 minutes)**









Name

Date

# Lesson 8: Adding and Subtracting Polynomials

# **Exit Ticket**

1. Must the sum of three polynomials again be a polynomial?

2. Find  $w^2 - w + 1 + (w^3 - 2w^2 + 99)$ .





91





# **Exit Ticket Sample Solutions**

```
    Must the sum of three polynomials again be a polynomial?
Yes.
    Find w<sup>2</sup> - w + 1 + (w<sup>3</sup> - 2w<sup>2</sup> + 99).
w<sup>3</sup> - w<sup>2</sup> - w + 100
```

# **Problem Set Sample Solutions**

| 1. | Celina says that each of the following expressions is actually a binomial in disguise:                                                                                                        |                                                                                                                                                                                                           |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|    | i.                                                                                                                                                                                            | i. $5abc-2a^2+6abc$                                                                                                                                                                                       |  |  |
|    | ii.                                                                                                                                                                                           | $5x^3 \cdot 2x^2 - 10x^4 + 3x^5 + 3x \cdot -2 x^4$                                                                                                                                                        |  |  |
|    | iii.                                                                                                                                                                                          | $t + 2^{2} - 4t$                                                                                                                                                                                          |  |  |
|    | iv.                                                                                                                                                                                           | 5 $a-1$ -10( $a-1$ ) + 100( $a-1$ )                                                                                                                                                                       |  |  |
|    | v.                                                                                                                                                                                            | $2\pi r - \pi r^2 r - (2\pi r - \pi r^2) \cdot 2r$                                                                                                                                                        |  |  |
|    | For example, she sees that the expression in (i) is algebraically equivalent to $11abc - 2a^2$ , which is indee<br>binomial. (She is happy to write this as $11abc + -2a^2$ , if you prefer.) |                                                                                                                                                                                                           |  |  |
|    | Is she right about the remaining four expressions?                                                                                                                                            |                                                                                                                                                                                                           |  |  |
|    | She i                                                                                                                                                                                         | is right about the remaining four expressions. They all can be expressed as binomials.                                                                                                                    |  |  |
| 2. | Janie writes a polynomial expression using only one variable, x, with degree 3. Max writes a polynomial expra<br>using only one variable, x, with degree 7.                                   |                                                                                                                                                                                                           |  |  |
|    | a.                                                                                                                                                                                            | What can you determine about the degree of the sum of Janie's and Max's polynomials?                                                                                                                      |  |  |
|    |                                                                                                                                                                                               | The degree would be 7.                                                                                                                                                                                    |  |  |
|    | b.                                                                                                                                                                                            | What can you determine about the degree of the difference of Janie's and Max's polynomials?                                                                                                               |  |  |
|    |                                                                                                                                                                                               | The degree would be 7.                                                                                                                                                                                    |  |  |
| 3. | Supp<br>poly                                                                                                                                                                                  | Suppose Janie writes a polynomial expression using only one variable, $x$ , with degree of 5, and Max writes a polynomial expression using only one variable, $x$ , with degree of 5.                     |  |  |
|    | a.                                                                                                                                                                                            | What can you determine about the degree of the sum of Janie's and Max's polynomials?                                                                                                                      |  |  |
|    |                                                                                                                                                                                               | The maximum degree could be 5, but it could also be anything less than that. For example, if Janie's polynomial were $x^5 + 3x - 1$ , and Max's were $-x^5 + 2x^2 + 1$ , the degree of the sum is only 2. |  |  |
|    | b.                                                                                                                                                                                            | What can you determine about the degree of the difference of Janie's and Max's polynomials?                                                                                                               |  |  |
|    |                                                                                                                                                                                               | The maximum degree could be 5, but it could also be anything less than that.                                                                                                                              |  |  |



Adding and Subtracting Polynomials 10/22/14



4.



ALGEBRA I

Find each sum or difference by combining the parts that are alike. a. 2p+4 + 5 p - 1 - (p+7)6p - 8 $7x^4 + 9x - 2(x^4 + 13)$ b.  $5x^4 + 9x - 26$  $6-t-t^4 + (9t+t^4)$ с. 8t + 6d.  $5-t^2 + 6t^2 - 8 - (t^2 + 12)$  $4t^2 - 55$  $8x^3 + 5x - 3(x^3 + 2)$ e.  $5x^3 + 5x - 6$ 12x + 1 + 2 x - 4 - (x - 15)f. 13x + 8 $13x^2 + 5x - 2(x^2 + 1)$ g.  $11x^2 + 5x - 2$ h.  $9-t-t^2 - \frac{3}{2} 8t + 2t^2$  $-4t^2 - 13t + 9$ 4m+6 - 12 m - 3 + m + 2i. -7m + 44 $15x^4 + 10x - 12(x^4 + 4x)$ j.  $3x^4 - 38x$ 





