# **Lesson 8: The Long Division Algorithm**

# Classwork

# **Example 1**

Show that the decimal expansion of  $\frac{26}{4}$  is 6.5.

#### Exercises 1-5

1. Use long division to determine the decimal expansion of  $\frac{142}{2}$ .

a. Fill in the blanks to show another way to determine the decimal expansion of  $\frac{142}{2}$ .

$$\frac{142}{2} = \underline{\hspace{1cm}}$$



- b. Does the number  $\frac{142}{2}$  have a finite or infinite decimal expansion? Explain how you know.
- 2. Use long division to determine the decimal expansion of  $\frac{142}{4}$ .

a. Fill in the blanks to show another way to determine the decimal expansion of  $\frac{142}{4}$ .

$$\frac{142}{4} = \frac{\times 4 + \dots}{4}$$

$$\frac{142}{4} = \underline{\qquad} + \overline{\qquad}$$

$$\frac{142}{4} = \underline{\hspace{1cm}}$$

- b. Does the number  $\frac{142}{4}$  have a finite or infinite decimal expansion? Explain how you know.
- 3. Use long division to determine the decimal expansion of  $\frac{142}{6}$ .



a. Fill in the blanks to show another way to determine the decimal expansion of  $\frac{142}{6}$ .

$$142 = \underline{\hspace{1cm}} \times 6 + \underline{\hspace{1cm}}$$

$$\frac{142}{6} = \frac{\times 6 + \underline{\hspace{1cm}}}{6}$$

$$\frac{142}{6} = \frac{\times 6}{6} + \frac{\times}{6}$$

$$\frac{142}{6} = \underline{\qquad} + \overline{\qquad}_{6}$$

$$\frac{142}{6} =$$
\_\_\_\_\_

b. Does the number  $\frac{142}{6}$  have a finite or infinite decimal expansion? Explain how you know.

4. Use long division to determine the decimal expansion of  $\frac{142}{11}$ .





a. Fill in the blanks to show another way to determine the decimal expansion of  $\frac{142}{11}$ .

$$\frac{142}{11} = \underline{\hspace{1cm}} + \overline{\frac{}{11}}$$

$$\frac{142}{11} = \underline{\hspace{1cm}}$$

- b. Does the number  $\frac{142}{11}$  have a finite or infinite decimal expansion? Explain how you know.
- 5. Which fractions produced an infinite decimal expansion? Why do you think that is?

### Exercises 6-10

6. Does the number  $\frac{65}{13}$  have a finite or infinite decimal expansion? Based on our definition of rational numbers having a decimal expansion that repeats eventually, is the number rational? Explain.





7. Does the number  $\frac{17}{11}$  have a finite or infinite decimal expansion? Based on our definition of rational numbers having a decimal expansion that repeats eventually, is the number rational? Explain.

8. Does the number  $\pi=3.1415926535897$  ... have a finite or infinite decimal expansion? Based on our definition of rational numbers having a decimal expansion that repeats eventually, is the number rational? Explain.

9. Does the number  $\frac{860}{999} = 0.860860860$  ... have a finite or infinite decimal expansion? Based on our definition of rational numbers having a decimal expansion that repeats eventually, is the number rational? Explain.

10. Does the number  $\sqrt{2} = 1.41421356237$  ... have a finite or infinite decimal expansion? Based on our definition of rational numbers having a decimal expansion that repeats eventually, is the number rational? Explain.





## **Lesson Summary**

The long division algorithm is a procedure that can be used to determine the decimal expansion of infinite decimals. Every rational number has a decimal expansion that repeats eventually. For example, the number 32 is rational because it has a repeat block of the digit 0 in its decimal expansion,  $32.\overline{0}$ . The number  $\frac{1}{3}$  is rational because it has a repeat block of the digit 3 in its decimal expansion,  $0.\overline{3}$ . The number 0.454545 ... is rational because it has a repeat block of the digits 45 in its decimal expansion,  $0.\overline{45}$ .

#### **Problem Set**

- 1. Write the decimal expansion of  $\frac{7000}{9}$ . Based on our definition of rational numbers having a decimal expansion that repeats eventually, is the number rational? Explain.
- 2. Write the decimal expansion of  $\frac{6555555}{3}$ . Based on our definition of rational numbers having a decimal expansion that repeats eventually, is the number rational? Explain.
- 3. Write the decimal expansion of  $\frac{350000}{11}$ . Based on our definition of rational numbers having a decimal expansion that repeats eventually, is the number rational? Explain.
- 4. Write the decimal expansion of  $\frac{12000000}{37}$ . Based on our definition of rational numbers having a decimal expansion that repeats eventually, is the number rational? Explain.
- 5. Someone notices that the long division of 2,222,222 by 6 has a quotient of 370,370 and remainder 2 and wonders why there is a repeating block of digits in the quotient, namely 370. Explain to the person why this happens.
- 6. Is the number  $\frac{9}{11} = 0.81818181 \dots$  rational? Explain.
- 7. Is the number  $\sqrt{3}=1.73205080$  ... rational? Explain.
- 8. Is the number  $\frac{41}{333} = 0.1231231231 \dots$  rational? Explain.



Lesson 8: Date: The Long Division Algorithm 4/5/14

