

Q Lesson 5: Graphs of Functions and Equations

Student Outcomes

- Students know that the definition of a graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
- Students understand why the graph of a function is identical to the graph of a certain equation.

Classwork

Exploratory Challenge/Exercises 1–3 (15 minutes)

Students work independently or in pairs to complete Exercises 1–3.

Lesson 5: Date: Graphs of Functions and Equations 11/19/14

Lesson 5: Date:

Graphs of Functions and Equations

11/19/14

Graphs of Functions and Equations 11/19/14

Lesson 5

8.5

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.</u> f.

3.

а.

b.

c.

e.

CORE

62

e. What do you think the graph of this function will look like? Explain. I think the graph of this function will look like the graph of the equation $y = x^2$. The inputs and outputs would match the solutions to the equation exactly. For the equation, the y value is the square of the x value. For the function, the output is the square of the input. Use the function you wrote in part (d) to determine the area of a square with side length 2.5. Write the input and output as an ordered pair. Does this point appear to belong to the graph of $y = x^2$? $A = (2.5)^2$ A = 6.25(2.5, 6.25) The point looks like it would belong to the graph of $y = x^2$; it looks like it would be on the curve that the shape of the graph is taking. The number of devices a particular manufacturing company can produce is a function of the number of hours spent making the devices. On average, 4 devices are produced each hour. Assume that devices are produced at a constant rate. Write an equation in two variables that represents the number of devices, y, as a function of the time the company spends making the devices, x. $\frac{4}{1} = \frac{y}{x}$ v = 4xUse the equation you wrote in part (a) to determine how many devices are produced in 8 hours. y = 4(8)*y* = 32 The company produces 32 devices in 8 hours. Use the equation you wrote in part (a) to determine how many devices are produced in 6 hours. y = 4(6)*y* = 24 The company produces 24 devices in 6 hours. d. Use the equation you wrote in part (a) to determine how many devices are produced in 4 hours. y = 4(4)*y* = 16 The company produces 16 devices in 4 hours. The input of the function, *x*, is time, and the output of the function, y, is the number of devices produced. Write the inputs and outputs from parts (b)-(d) as ordered pairs, and plot them as points on a coordinate plane. (8,32), (6,24), (4,16) engage^{ny} COMMON Lesson 5: Graphs of Functions and Equations Date: 11/19/14 This work is licensed under a © 2014 Common Core, Inc. Some rights reserved. commoncore.org (cc) BY-NC-SA Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

f. What shape does the graph of the points appear to take? The points appear to be in a line. Is the function continuous or discrete? g. The function is continuous because we can find the number of devices produced for any given time, including fractions of an hour. Use the equation you wrote in part (a) to determine how many devices are produced in 1.5 hours. Write h. your answer as an ordered pair, as you did in part (e), and include the point on the graph. Is the point in a place where you expected it to be? Explain. y = 4(1.5)y = 6(1.5, 6) The point is where I expected it to be because it is in line with the other points. Assume you used the rule that describes the function to determine how many devices are produced for any i. given time and wrote each answer as an ordered pair. Where do you think these points would appear on the graph? I think all of the points would fall on a line. What do you think the graph of this function will look like? Explain. j. I think the graph of this function will be a line. Since the rate is continuous, we can find all of the points that represent fractional intervals of time. We also know that devices are produced at a constant rate, so we would expect that as the time spent producing devices increases, the number of devices produced would increase at the same rate. Connect the points you have graphed to make a line. Select a point on the graph that has integer k. coordinates. Verify that this point has an output that the function would assign to the input. Answers will vary. Sample student work: The point (5, 20) is a point on the graph. y = 4x20 = 4(5)20 = 20The function assigns the output of 20 to the input of 5. Sketch the graph of the equation y = 4x using the same coordinate plane in part (e). What do you notice ١. about the graph of the function that describes the company's constant rate of producing devices and the graph of the equation y = 4x? The graphs of the equation and the function coincide completely.

Graphs of Functions and Equations 11/19/14

Discussion (10 minutes)

- What was the rule that described the function in Exercise 1?
 - The rule was $y = \frac{1}{2}x$.
- Given an input, how did you determine the output that the function would assign?
 - We used the rule. In place of x, we put the input. The number that was computed was the output.
- When you wrote your inputs and corresponding outputs as ordered pairs, what you were doing can be described generally by the ordered pair $(x, \frac{1}{2}x)$.

Give students a moment to make sense of the ordered pair and verify that it matches their work in Exercise 1. Then continue with the discussion.

- When we first began graphing linear equations in two variables, we used a table and picked a value for x and then used that x to compute the value of y. For an equation of the form $y = \frac{1}{7}x$, the ordered pairs that represent solutions to the equation can be described generally by $\left(x, \frac{1}{7}x\right)$.
- How does the ordered pair from the function compare to the ordered pair of the equation?
 - The ordered pairs of the function and the equation are exactly the same.
- What does that mean about the graph of a function compared to the graph of an equation?
 - It means the graph of a function will be the same as the graph of the equation.
- Can we make similar conclusions about Exercise 2?

Give students time to verify that the conclusions about Exercise 2 are the same as the conclusions about Exercise 1. Then continue with the discussion.

- What ordered pair generally describes the inputs and corresponding outputs of Exercise 2?
 - $\square \quad (x, 4x)$
- What ordered pair generally describes the x and y values of the equation y = 4x?
 - $\ \ \, (x,4x)$
- What does that mean about the graph of the function and the graph of the equation?
 - ^a It means that the graph of the function is the same as the graph of the equation.
- For Exercise 3, you began by graphing the equation $y = x^2$ for positive values of x. What was the shape of the graph?
 - It looked curved.
- The graph had a curve in it because it was not the graph of a linear equation. All linear equations graph as lines. That is what we learned in Module 4. Since this equation was not linear, we should expect it to graph as something other than a line.
- What did you notice about the ordered pairs of the equation $y = x^2$ and the inputs and corresponding outputs for the function $A = s^2$?
 - The ordered pairs were exactly the same for the equation and the function.
- What does that mean about the graphs of functions, even those that are not linear?
 - ^a It means that the graph of a function will be identical to the graph of an equation.

Graphs of Functions and Equations 11/19/14

Lesson 5

 Now we know that we can graph linear and nonlinear functions by writing their inputs and corresponding outputs as ordered pairs. The graphs of functions will be the same as the graphs of the equations that describe them.

Exploratory Challenge/Exercise 4 (7 minutes)

Students work in pairs to complete Exercise 4.

Graphs of Functions and Equations 11/19/14

Lesson 5

8•5

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.</u>

COMMON CORE

Lesson 5: Date: Graphs of Functions and Equations 11/19/14

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Discussion (3 minutes)

- We know that the graph of a function is the set of points with coordinates of an input and a corresponding output. How did you use this fact to determine which graphs, if any, were functions?
 - By the definition of a function, we need each input to have only one output. On a graph, it means that for each of the ordered pairs, the *x* should have a unique *y* value.
- Assume the following set of ordered pairs is from a graph. Could these ordered pairs represent the graph of a function? Explain.

(3,5), (4,7), (3,9), (5,-2)

- No, because the input of 3 has two different outputs. It does not fit the definition of a function.
- Assume the following set of ordered pairs is from a graph. Could these ordered pairs represent the graph of a function? Explain.

$$(-1, 6), (-3, 8), (5, 10), (7, 6)$$

- P Yes, because each input has a unique output. It satisfies the definition of a function.
- Which of the following four graphs are functions? Explain.

Lesson 5: Date:

Graphs of Functions and Equations 11/19/14

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.</u>

Graphs 1 and 4 are functions. Graphs 2 and 3 are not. Graphs 1 and 4 show that for each input of x, there is a unique output of y. For Graph 2, the input of x = 1 has two different outputs, y = 0 and y = 2, which means it cannot be a function. For Graph 3, it appears that each value of x between -5 and -1, excluding -5 and -1, has two outputs, one on the lower half of the circle and one on the upper half, which means it does not fit the definition of function.

Closing (5 minutes)

Summarize, or ask students to summarize, the main points from the lesson:

- We know that we can graph a function by writing the inputs and corresponding outputs as ordered pairs.
- We know that the graph of a function is the same as the graph of the rule (equation) that describes it.
- We know that we can examine a graph to determine if it is the graph of a function, specifically to make sure that each value of x (inputs) has only one y value (outputs).

Lesson Summary

The inputs and outputs of a function can be written as ordered pairs and graphed on a coordinate plane. The graph of a function is the same as the rule (equation) that describes it. For example, if a function can be described by the equation y = mx, then the ordered pairs of the graph are (x, mx), and the graph of the function is the same as the graph of the equation, y = mx.

One way to determine if a set of data is a function or not is by examining the inputs and outputs given by a table. If the data is in the form of a graph, the process is the same. That is, examine each coordinate of x and verify that it has only one y coordinate. If each input has exactly one output, then the graph is the graph of a function.

Exit Ticket (5 minutes)

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

Lesson 5

8.5

Name

Date _____

Lesson 5: Graphs of Functions and Equations

Exit Ticket

The amount of water that flows out of a certain hose in gallons is a function of the amount of time in minutes that the faucet is turned on. The amount of water that flows out of the hose in 4 minutes is 11 gallons. Assume water flows at a constant rate.

- a. Write an equation in two variables that represents the amount of water, *y*, in gallons, as a function of the time in minutes, *x*, the faucet is turned on.
- b. Use the equation you wrote in part (a) to determine the amount of water that flows out of a hose in 8 minutes, 4 minutes, and 2 minutes.

c. The input of the function, x, is time in minutes, and the output of the function, y, is the amount of water that flows out of the hose in gallons. Write the inputs and outputs from part (b) as ordered pairs, and plot them as points on the coordinate plane.

22-											
20-											
14											
Water 12- flow in											
gallons 10-											
8-											
6-											
4-											
0											
-1	0 1	2	3	4 Time in n	s é ninutes	5	7	8	9 1	0 1	1 12

Lesson 5: Date: Graphs of Functions and Equations 11/19/14

Exit Ticket Sample Solutions

The amount of water that flows out of a certain hose in gallons is a function of the amount of time in minutes that the faucet is turned on. The amount of water that flows out of the hose in 4 minutes is 11 gallons. Assume water flows at a constant rate.

a. Write an equation in two variables that represents the amount of water, y, in gallons, as a function of the time in minutes, x, the faucet is turned on.

 $\frac{11}{4} = \frac{y}{x}$ $y = \frac{11}{4}x$

 Use the equation you wrote in part (a) to determine the amount of water that flows out of a hose in 8 minutes, 4 minutes, and 2 minutes.

$$y = \frac{11}{4}(8)$$
$$y = 22$$

In 8 minutes, 22 gallons of water flow out of the hose.

$$y = \frac{11}{4}(4)$$
$$y = 11$$

In 4 minutes, 11 gallons of water flow out of the hose.

$$y = \frac{11}{4}(2)$$
$$y = 5.5$$

In 2 minutes, 5.5 gallons of water flow out of the hose.

c. The input of the function, x, is time in minutes, and the output of the function, y, is the amount of water that flows out of the hose in gallons. Write the inputs and outputs from part (b) as ordered pairs, and plot them as points on the coordinate plane.

(8,22), (4,11), (2,5.5)

COMMON CORE

Lesson 5: Date: Graphs of Functions and Equations 11/19/14

Problem Set Sample Solutions

Graphs of Functions and Equations 11/19/14

71

72

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

Lesson 5: Date:

the shape of the graph is taking.

Graphs of Functions and Equations 11/19/14

This work is licensed under a (cc) BY-NC-SA Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. 73

8•5

Lesson 5

Graphs of Functions and Equations 11/19/14

COMMON CORE

Lesson 5: Date:

Graphs of Functions and Equations

11/19/14

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

ny

engage