Q Lesson 13: Angle Sum of a Triangle

Student Outcomes

- Students know the angle sum theorem for triangles; the sum of the interior angles of a triangle is always 180°.
- Students present informal arguments to draw conclusions about the angle sum of a triangle.

Classwork

Concept Development (3 minutes)

- The angle sum theorem for triangles states that the sum of the interior angles of a triangle is always 180° (\angle sum of Δ).
- It does not matter what kind of triangle it is (i.e., acute, obtuse, right); when you add the measure of the three angles, you always get a sum of 180°.
Concept Development

$$
\angle 1+\angle 2+\angle 3=\angle 4+\angle 5+\angle 6=\angle 7+\angle 8+\angle 9=180
$$

Note that the sum of angles 7 and 9 must equal 90° because of the known right angle in the right triangle.

We want to prove that the angle sum of any triangle is 180°. To do so, we will use some facts that we already know about geometry:

- A straight angle is 180° in measure.
- Corresponding angles of parallel lines are equal in measure (corr. $\angle s, \overline{A B} \| \overline{C D}$).
- Alternate interior angles of parallel lines are equal in measure (alt. $\angle s, \overline{A B} \| \overline{C D}$).

Exploratory Challenge 1 (13 minutes)

Provide students 10 minutes of work time. Once the 10 minutes have passed, review the solutions with the students before moving on to Exploratory Challenge 2.

Exploratory Challenge 1

Let triangle $A B C$ be given. On the ray from B to C, take a point D so that C is between B and D. Through point C, draw a line parallel to $A B$, as shown. Extend the parallel lines $A B$ and $C E$. Line $A C$ is the transversal that intersects the parallel lines.

a. Name the three interior angles of triangle $A B C$.
$\angle A B C, \angle B A C, \angle B C A$
b. Name the straight angle.
$\angle B C D$
Our goal is to show that the three interior angles of triangle ABC are equal to the angles that make up the straight angle. We already know that a straight angle is 180° in measure. If we can show that the interior angles of the triangle are the same as the angles of the straight angle, then we will have proven that the interior angles of the triangle have a sum of 180°.
c. What kinds of angles are $\angle A B C$ and $\angle E C D$? What does that mean about their measures?
$\angle A B C$ and $\angle E C D$ are corresponding angles. Corresponding angles of parallel lines are equal in measure (corr. $\angle s, \overline{A B} \| \overline{C E}$).
d. What kinds of angles are $\angle B A C$ and $\angle E C A$? What does that mean about their measures?
$\angle B A C$ and $\angle E C A$ are alternate interior angles. Alternate interior angles of parallel lines are equal in measure (alt. $\angle s, \overline{A B} \| \overline{C E}$).
e. We know that $\angle B C D=\angle B C A+\angle E C A+\angle E C D=180^{\circ}$. Use substitution to show that the three interior angles of the triangle have a sum of 180°.
$\angle B C D=\angle B C A+\angle B A C+\angle A B C=180^{\circ}(\angle$ sum of $\triangle)$.
Lesson 13: Angle Sum of a Triangle
Date: $\quad 10 / 28 / 14$

Exploratory Challenge $\mathbf{2}$ (20 minutes)

Provide students 15 minutes of work time. Once the 15 minutes have passed, review the solutions with the students.

Exploratory Challenge 2

The figure below shows parallel lines L_{1} and L_{2}. Let m and n be transversals that intersect L_{1} at points B and C, respectively, and L_{2} at point F, as shown. Let A be a point on L_{1} to the left of B, D be a point on L_{1} to the right of C, G be a point on L_{2} to the left of F, and E be a point on L_{2} to the right of F.

a. Name the triangle in the figure.
$\triangle B C F$
b. Name a straight angle that will be useful in proving that the sum of the interior angles of the triangle is 180°.
$\angle G F E$
As before, our goal is to show that the interior angles of the triangle are equal to the straight angle. Use what you learned from Exploratory Challenge 1 to show that interior angles of a triangle have a sum of 180°.
c. Write your proof below.

The straight angle $\angle G F E$ is comprised of angles $\angle G F B, \angle B F C$, and $\angle E F C$. Alternate interior angles of parallel lines are equal in measure (alt. $\angle s, \overline{A D} \| \overline{C E}$). For that reason, $\angle B C F=\angle E F C$ and $\angle C B F=\angle G F B$. Since $\angle G F E$ is a straight angle, it is equal to 180°. Then, $\angle G F E=\angle G F B+\angle B F C+\angle E F C=180^{\circ} . B y$ substitution, $\angle G F E=\angle C B F+\angle B F C+\angle B C F=180^{\circ}$. Therefore, the sum of the interior angles of a triangle is 180° (\angle sum of \triangle).

Closing (4 minutes)

Summarize, or have students summarize, the lesson.

- All triangles have a sum of interior angles equal to 180°.
- We can prove that a triangle has a sum of interior angles equal to that of a straight angle using what we know about alternate interior angles and corresponding angles of parallel lines.

Lesson Summary
All triangles have a sum of interior angles equal to 180°.
The proof that a triangle has a sum of interior angles equal to $\mathbf{1 8 0}^{\circ}$ is dependent upon the knowledge of straight angles and angle relationships of parallel lines cut by a transversal.

Exit Ticket (5 minutes)

Name \qquad Date \qquad

Lesson 13: Angle Sum of a Triangle

Exit Ticket

1. If $L_{1} \| L_{2}$, and $L_{3} \| L_{4}$, what is the measure of $\angle 1$? Explain how you arrived at your answer.

2. Given Line $A B$ is parallel to Line $C E$, present an informal argument to prove that the interior angles of triangle $A B C$ have a sum of 180°.

Exit Ticket Sample Solutions

1. If $L_{1} \| L_{2}$, and $L_{3} \| L_{4}$, what is the measure of $\angle 1$? Explain how you arrived at your answer.

The measure of angle 1 is 29°. I know that the angle sum of triangles is 180°. I already know that two of the angles of the triangle are 90° and 61°.
2. Given Line $A B$ is parallel to Line $C E$, present an informal argument to prove that the interior angles of triangle $A B C$ have a sum of 180°.

[^0]
Problem Set Sample Solutions

Students practice presenting informal arguments about the sum of the angles of a triangle using the theorem to find the measures of missing angles.

1. In the diagram below, line $A B$ is parallel to line $C D$, i.e., $L_{A B} \| L_{C D}$. The measure of angle $\angle A B C=28^{\circ}$, and the measure of angle $\angle E D C=42^{\circ}$. Find the measure of angle $\angle C E D$. Explain why you are correct by presenting an informal argument that uses the angle sum of a triangle.

The measure of angle $\angle C E D=110^{\circ}$. This is the correct measure for the angle because $\angle A B C$ and $\angle D C E$ are alternate interior angles of parallel lines. That means that the angles are congruent and have the same measure. Since the angle sum of a triangle is 180°, then the measure of $\angle C E D=180^{\circ}-\left(28^{\circ}+42^{\circ}\right)=110^{\circ}$.
2. In the diagram below, line $A B$ is parallel to line $C D$, i.e., $L_{A B} \| L_{C D}$. The measure of angle $\angle A B E=38^{\circ}$, and the measure of angle $\angle E D C=16^{\circ}$. Find the measure of angle $\angle B E D$. Explain why you are correct by presenting an informal argument that uses the angle sum of a triangle. (Hint: Find the measure of angle $\angle C E D$ first, and then use that measure to find the measure of angle $\angle B E D$.)

The measure of angle $\angle B E D=54^{\circ}$. This is the correct measure for the angle because $\angle A B C$ and $\angle D C E$ are alternate interior angles of parallel lines. That means that the angles are congruent and have the same measure. Since the angle sum of a triangle is 180°, then the measure of $\angle C E D=180^{\circ}-\left(38^{\circ}+16^{\circ}\right)=126^{\circ}$. The straight angle $\angle B E C$ is made up of $\angle C E D$ and $\angle B E D$. Since we know straight angles are 180° in measure, and angle $\angle C E D=126^{\circ}$, then $\angle B E D=54^{\circ}$.
3. In the diagram below, line $A B$ is parallel to line $C D$, i.e., $L_{A B} \| L_{C D}$. The measure of angle $\angle A B E=56^{\circ}$, and the measure of angle $\angle E D C=22^{\circ}$. Find the measure of angle $\angle B E D$. Explain why you are correct by presenting an informal argument that uses the angle sum of a triangle. (Hint: Extend the segment $B E$ so that it intersects line CD.)

The measure of angle $\angle B E D=78^{\circ}$. This is the correct measure for the angle because $\angle A B E$ and $\angle D F E$ are alternate interior angles of parallel lines. That means that the angles are congruent and have the same measure. Since the angle sum of a triangle is 180°, then the measure of $\angle F E D=180^{\circ}-\left(56^{\circ}+22^{\circ}\right)=102^{\circ}$. The straight angle $\angle B E F$ is made up of $\angle F E D$ and $\angle B E D$. Since straight angles are 180° in measure, and angle $\angle F E D=102^{\circ}$, then $\angle B E D=78^{\circ}$.
4. What is the measure of $\angle A C B$?

The measure of $\angle A C B$ is $180^{\circ}-\left(83^{\circ}+64^{\circ}\right)=33^{\circ}$.
5. What is the measure of $\angle E F D$?

The measure of $\angle E F D$ is $180^{\circ}-\left(101^{\circ}+40^{\circ}\right)=39^{\circ}$.
6. What is the measure of $\angle H I G$?

The measure of $\angle H I G$ is $180^{\circ}-\left(154^{\circ}+14^{\circ}\right)=12^{\circ}$.
7. What is the measure of $\angle A B C$?

The measure of $\angle A B C$ is 60° because $60+60+60=180$.
8. Triangle $D E F$ is a right triangle. What is the measure of $\angle E F D$?

The measure of $\angle E F D$ is $90^{\circ}-57^{\circ}=33^{\circ}$.
9. In the diagram below, lines L_{1} and L_{2} are parallel. Transversals r and s intersect both lines at the points shown below. Determine the measure of $\angle J M K$. Explain how you know you are correct.

The lines L_{1} and L_{2} are parallel, which means that the alternate interior angles formed by the transversals are equal. Specifically, $\angle L M K=\angle J K M=72^{\circ}$. Since triangle $\Delta J K M$ has a sum of interior angles equal to $\mathbf{1 8 0}^{\circ}$, then $\angle K J M+\angle J M K+\angle J K M=180^{\circ}$. By substitution, we have $39+\angle J M K+72=180$; therefore, $\angle J M K=69^{\circ}$.

Lesson 13:	Angle Sum of a Triangle
Date:	$10 / 28 / 14$

[^0]: Since $A B$ is parallel to $C E$, then the corresponding angles $\angle B A C$ and $\angle E C D$ are equal in measure. Similarly, angles $\angle A B C$ and $\angle E C B$ are equal in measure because they are alternate interior angles. Since $\angle A C D$ is a straight angle, i.e., equal to 180° in measure, substitution shows that triangle $A B C$ has a sum of 180°. Specifically, the straight angle is made up of angles $\angle A C B, \angle E C B$, and $\angle E C D . \angle A C B$ is one of the interior angles of the triangle and one of the angles of the straight angle. We know that angle $\angle A B C$ has the same measure as angle $\angle E C B$ and that angle $\angle B A C$ has the same measure as $\angle E C D$. Therefore, the sum of the interior angles will be the same as the angles of the straight angle, which is 180°.

