Lesson 9: Sequencing Rotations

Classwork

Exploratory Challenge

E

1.

- Rotate \triangle ABC d degrees around center D. Label the rotated image as \triangle A'B'C'.
- Rotate \triangle A'B'C' d degrees around center E. Label the rotated image as \triangle A''B''C''. b.
- Measure and label the angles and side lengths of \triangle ABC. How do they compare with the images \triangle A'B'C' and $\triangle A''B''C''$?
- How can you explain what you observed in part (c)? What statement can you make about properties of sequences of rotations as they relate to a single rotation?

Lesson 9: Date:

Sequencing Rotations 10/28/14

2.

● E

D

- a. Rotate \triangle ABC d degrees around center D, and then rotate again d degrees around center E. Label the image as \triangle A'B'C' after you have completed both rotations.
- b. Can a single rotation around center D map $\triangle A'B'C'$ onto $\triangle ABC$?
- c. Can a single rotation around center E map $\triangle A'B'C'$ onto $\triangle ABC$?
- d. Can you find a center that would map $\triangle A'B'C'$ onto $\triangle ABC$ in one rotation? If so, label the center F.

Lesson 9: Date: Sequencing Rotations 10/28/14

3.

● E

•^D

- a. Rotate \triangle ABC 90° (counterclockwise) around center D, and then rotate the image another 90° (counterclockwise) around center E. Label the image \triangle A'B'C'.
- b. Rotate \triangle ABC 90° (counterclockwise) around center E and then rotate the image another 90° (counterclockwise) around center D. Label the image \triangle A''B''C''.
- c. What do you notice about the locations of \triangle A'B'C' and \triangle A''B''C''? Does the order in which you rotate a figure around different centers have an impact on the final location of the figure's image?

4.

• D

- a. Rotate \triangle ABC 90° (counterclockwise) around center D, and then rotate the image another 45° (counterclockwise) around center D. Label the \triangle A'B'C'.
- b. Rotate \triangle ABC 45° (counterclockwise) around center D, and then rotate the image another 90° (counterclockwise) around center D. Label the \triangle A''B''C''.
- c. What do you notice about the locations of \triangle A'B'C' and \triangle A''B''C''? Does the order in which you rotate a figure around the same center have an impact on the final location of the figure's image?

Lesson 9: Date: Sequencing Rotations 10/28/14

5. \triangle *ABC* has been rotated around two different centers, and its image is \triangle *A'B'C'*. Describe a sequence of rigid motions that would map \triangle *ABC* onto \triangle *A'B'C'*.

(cc) BY-NC-SA

Lesson Summary

- Sequences of rotations have the same properties as a single rotation:
 - A sequence of rotations preserves degrees of measures of angles.
 - A sequence of rotations preserves lengths of segments.
- The order in which a sequence of rotations around different centers is performed matters with respect to the final location of the image of the figure that is rotated.
- The order in which a sequence of rotations around the same center is performed does not matter. The image of the figure will be in the same location.

Problem Set

Refer to the figure below.

- Rotate $\angle ABC$ and segment DE d degrees around center F, then d degrees around center G. Label the final location of the images as $\angle A'B'C'$ and D'E'.
- b. What is the size of $\angle ABC$, and how does it compare to the size of $\angle A'B'C'$? Explain.
- What is the length of segment DE, and how does it compare to the length of segment D'E'? Explain.

Lesson 9: Date:

Sequencing Rotations 10/28/14

Refer to the figure given below.

- Let $Rotation_1$ be a counterclockwise rotation of 90° around the center O. Let $Rotation_2$ be a clockwise rotation of $(-45)^{\circ}$ around the center Q. Determine the approximate location of $Rotation_1(\Delta \ ABC)$ followed by $Rotation_2$. Label the image of triangle ABC as A'B'C'.
- Describe the sequence of rigid motions that would map \triangle *ABC* onto \triangle *A'B'C'*.
- Refer to the figure given below.

Let R be a rotation of $(-90)^{\circ}$ around the center O. Let Rotation₂ be a rotation of $(-45)^{\circ}$ around the same center O. Determine the approximate location of $Rotation_1(\triangle ABC)$ followed by $Rotation_2(\triangle ABC)$. Label the image of triangle ABC as A'B'C'.

Lesson 9: Date:

Sequencing Rotations 10/28/14

