

Lesson 9: Sequencing Rotations

Student Outcomes

- Students learn that sequences of rotations preserve lengths of segments as well as degrees of measures of angles.
- Students describe a sequence of rigid motions that would map a triangle back to its original position after being rotated around two different centers.

Classwork

Exploratory Challenge (35 minutes)

Lesson 9: Sequencing Rotations Date: 10/28/14

engage^{ny}

Note: Students can only find the center F through trial and error at this point. Finding the center of rotation for two congruent figures is a skill that will be formalized in high school Geometry.

Date:

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

Sequencing Rotations 10/28/14

98

Sequencing Rotations 10/28/14

Lesson 9:

Date:

Closing (5 minutes)

Summarize, or have students summarize, the lesson.

- Sequences of rotations enjoy the same properties as single rotations. That is, a sequence of rotations
 preserves lengths of segments and degrees of measures of angles.
- The order in which a sequence of rotations around two different centers is performed matters. The order in which a sequence of rotations around the same center is performed does not matter.
- When a figure is rotated around two different centers, we can describe a sequence of rigid motions that would map the original figure onto the resulting image.

Lesson Summary

- Sequences of rotations have the same properties as a single rotation:
 - A sequence of rotations preserves degrees of measures of angles.
 - A sequence of rotations preserves lengths of segments.
- The order in which a sequence of rotations around different centers is performed matters with respect to the final location of the image of the figure that is rotated.
- The order in which a sequence of rotations around the same center is performed does not matter. The image of the figure will be in the same location.

Exit Ticket (5 minutes)

Lesson 9 8.7

Name

Date

Lesson 9: Sequencing Rotations

Exit Ticket

1. Let $Rotation_1$ be the rotation of a figure *d* degrees around center *O*. Let $Rotation_2$ be the rotation of the same figure d degrees around center P. Does the Rotation₁ of the figure followed by the Rotation₂ equal a Rotation₂ of the figure followed by the *Rotation*₁? Draw a picture if necessary.

2. Angle ABC underwent a sequence of rotations. The original size of $\angle ABC = 37^{\circ}$. What was the size of the angle after the sequence of rotations? Explain.

3. Triangle ABC underwent a sequence of rotations around two different centers. Its image is $\triangle A'B'C'$. Describe a sequence of rigid motions that would map $\triangle ABC$ onto $\triangle A'B'C'$.

Date:

© 2014 Common Core, Inc. Some rights reserved. commoncore.org

101

engage

Exit Ticket Sample Solutions

Sequencing Rotations 10/28/14

engage^{ny}

Problem Set Sample Solutions

Sequencing Rotations 10/28/14

engage^{ny}

Sequencing Rotations 10/28/14

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.</u>