Lesson 6: Rotations of 180 Degrees

Student Outcomes

- Students learn that a rotation of 180 degrees moves a point on the coordinate plane (a, b) to $(-a,-b)$.
- Students learn that a rotation of 180 degrees around a point, not on the line, produces a line parallel to the given line.

Classwork

Example 1 (5 minutes)

- Rotations of 180 degrees are special. Recall, a rotation of 180 degrees around O is a rigid motion so that if P is any point in the plane, P, O, and Rotation (P) are collinear (i.e., they lie on the same line).
- Rotations of 180 degrees occur in many situations. For example, the frequently cited fact that vertical angles [vert. $\angle s$] at the intersection of two lines are equal, follows immediately from the fact that 180-degree rotations are angle-preserving. More precisely, let two lines L_{1} and L_{2} intersect at O, as shown:

Example 1

The picture below shows what happens when there is a rotation of $\mathbf{1 8 0}^{\circ}$ around center \boldsymbol{O}.

- We want to show that the vertical angles [vert. $\angle s$], $\angle m$ and $\angle n$, are equal (i.e., $\angle m=\angle n$). If we let Rotation $_{0}$ be the 180 -degree rotation around O, then Rotation maps $\angle m$ to $\angle n$. More precisely, if P and Q are points on L_{1} and L_{2}, respectively (as shown above), let Rotation $_{0}(P)=P^{\prime}$ and Rotation $_{0}(Q)=Q^{\prime}$. Then, Rotation maps $_{0} \angle P O Q(\angle m)$ to $\angle Q^{\prime} O P^{\prime}(\angle n)$, and since Rotation ${ }_{0}$ is angle-preserving, we have $\angle m=\angle n$.

Example 2 (5 minutes)

- Let's look at a 180-degree rotation, Rotation $_{0}$ around the origin O of a coordinate system. If a point P has coordinates (a, b), it is generally said that Rotation $_{0}(P)$ is the point with coordinates $(-a,-b)$.
- Suppose the point P has coordinates $(-4,3)$; we will show that the coordinates of Rotation $_{0}(P)$ are $(4,-3)$.

Example 2

The picture below shows what happens when there is a rotation of 180° around center O, the origin of the coordinate plane.

- Let $P^{\prime}=$ Rotation $_{0}(P)$. Let the vertical line (i.e., the line parallel to the y-axis) through P meet the x-axis at a point A. Because the coordinates of P are $(-4,3)$, the point A has coordinates $(-4,0)$ by the way coordinates are defined. In particular, A is of distance 4 from O, and since Rotation ${ }_{0}$ is length-preserving, the point $A^{\prime}=$ Rotation $_{0}(A)$ is also of distance 4 from O. However, Rotation $_{0}$ is a 180-degree rotation around O, so A^{\prime} also lies on the x-axis but on the opposite side of the x-axis from A. Therefore, the coordinates of A^{\prime} are $(4,0)$. Now, $\angle P A O$ is a right angle and-since Rotation n_{0} maps it to $\angle P^{\prime} A^{\prime} O$, and also preserves degrees-we see that $\angle P^{\prime} A^{\prime} O$ is also a right angle. This means that A^{\prime} is the point of intersection of the vertical line through P^{\prime} and the x-axis. Since we already know that A^{\prime} has coordinates of $(4,0)$, then the x-coordinate of P^{\prime} is 4 , by definition.
- Similarly, the y-coordinate of P being 3 implies that the y-coordinate of P^{\prime} is -3 . Altogether, we have proved that the 180 -degree rotation of a point of coordinates $(-4,3)$ is a point with coordinates $(4,-3)$.

The reasoning is perfectly general: The same logic shows that the 180-degree rotation around the origin of a point of coordinates (a, b) is the point with coordinates $(-a,-b)$, as desired.

Exercises 1-9 (16 minutes)

Students complete Exercises 1-2 independently. Check solutions. Then, let students work in pairs on Exercises 3-4. Students complete Exercises 5-9 independently in preparation for the example that follows.

Exercises 1-9

1. Using your transparency, rotate the plane 180 degrees, about the origin. Let this rotation be Rotation . What are $^{\text {. We }}$ the coordinates of Rotation $(2,-4)$?

Rotation $_{0}(2,-4)=(-2,4)$.

2. Let Rotation De $_{0}$ be the rotation of the plane by 180 degrees, about the origin. Without using your transparency, find Rotation ${ }_{0}(-3,5)$.

Rotation $_{0}(-3,5)=(3,-5)$.

3. Let Rotation R $_{0}$ be the rotation of 180 degrees around the origin. Let L be the line passing through $(-6,6)$ parallel to the x-axis. Find Rotation ${ }_{0}(L)$. Use your transparency if needed.

4. Let Rotation $_{0}$ be the rotation of 180 degrees around the origin. Let L be the line passing through $(7,0)$ parallel to the y-axis. Find Rotation (L). Use your transparency if needed.

5. Let Rotation R $_{0}$ be the rotation of 180 degrees around the origin. Let L be the line passing through $(0,2)$ parallel to the x-axis. Is L parallel to Rotation $_{0}(L)$?

Yes, $L \|$ Rotation $_{0}(L)$.

6. Let Rotation $_{0}$ be the rotation of 180 degrees around the origin. Let L be the line passing through $(4,0)$ parallel to the y-axis. Is L parallel to Rotation $_{0}(L)$?
Yes, $L \|$ Rotation $_{0}(L)$.

7. Let Rotation Re $_{0}$ be the rotation of 180 degrees around the origin. Let L be the line passing through $(0,-1)$ parallel to the x-axis. Is L parallel to Rotation $_{0}(L)$?

Yes, $L \|$ Rotation $_{0}(L)$.

8. Let Rotation $_{0}$ be the rotation of 180 degrees around the origin. Is L parallel to Rotation $_{0}(L)$? Use your transparency if needed.
Yes, $L \|$ Rotation $_{0}(L)$.

9. Let Rotation R $_{0}$ be the rotation of 180 degrees around the origin. Is L parallel to Rotation $_{0}(L)$? Use your transparency if needed.

Yes, $L \|$ Rotation $_{0}(L)$.

Example 3 (5 minutes)

MP. 2
Theorem. Let O be a point not lying on a given line L. Then, the 180-degree rotation around O maps L to a line parallel to L.

Proof: Let Rotation be the $_{0} 180$-degree rotation around O, and let P be a point on L. As usual, denote Rotation (P) by P^{\prime}. Since Rotation $_{0}$ is a 180 -degree rotation, P, O, P^{\prime} lie on the same line (denoted by ℓ).

We want to investigate whether P^{\prime} lies on L or not. Keep in mind that we want to show that the 180-degree rotation maps L to a line parallel to L. If the point P^{\prime} lies on L, then at some point, the line L and $\operatorname{Rotation}_{0}(L)$ intersect, meaning they are not parallel. If we can eliminate the possibility that P^{\prime} lies on L, then we have to conclude that P^{\prime} does not lie on L (rotations of 180 degrees make points that are collinear). If P^{\prime} lies on L, then ℓ is a line that joins two points, P^{\prime} and P, on L. However L is already a line that joins P^{\prime} and P, so ℓ and L must be the same line (i.e., $\ell=L$). This is
trouble because we know O lies on ℓ, so $\ell=L$ implies that O lies on L. Look at the hypothesis of the theorem: "Let O be a point not lying on a given line $L . "$ We have a contradiction. So, the possibility that P^{\prime} lies on L is nonexistent. As we said, this means that P^{\prime} does not lie on L.

What we have proved is that no matter which point P we take from L, we know Rotation (P) does not lie on L. But Rotation $_{0}(L)$ consists of all the points of the form Rotation $_{0}(P)$ where P lies on L, so what we have proved is that no point of Rotation $n_{0}(L)$ lies on L. In other words, L and Rotation $_{0}(L)$ have no point in common (i.e., $L \|$ Rotation $_{0}(L)$). The theorem is proved.

Closing (5 minutes)

Summarize, or have students summarize, the lesson.

- Rotations of 180 degrees are special:
- A point, P, that is rotated 180 degrees around a center O, produces a point P^{\prime} so that P, O, P^{\prime} are collinear.
- When we rotate around the origin of a coordinate system, we see that the point with coordinates (a, b) is moved to the point $(-a,-b)$.
- We now know that when a line is rotated 180 degrees around a point not on the line, it maps to a line parallel to the given line.

Lesson Summary

- A rotation of 180 degrees around O is the rigid motion so that if P is any point in the plane, P, O, and Rotation (P) are collinear (i.e., lie on the same line).
- Given a 180-degree rotation, R_{0} around the origin O of a coordinate system, and a point P with coordinates (a, b), it is generally said that $R_{0}(P)$ is the point with coordinates $(-a,-b)$.

Theorem: Let O be a point not lying on a given line L. Then, the 180 -degree rotation around O maps L to a line parallel to L.

Exit Ticket (5 minutes)

Name \qquad Date \qquad

Lesson 6: Rotations of 180 Degrees

Exit Ticket

Let there be a rotation of 180 degrees about the origin. Point A has coordinates $(-2,-4)$, and point B has coordinates $(-3,1)$, as shown below.

1. What are the coordinates of Rotation (A) ? Mark that point on the graph so that Rotation $(A)=A^{\prime}$. What are the coordinates of Rotation (B) ? Mark that point on the graph so that Rotation $(B)=B^{\prime}$.
2. What can you say about the points A, A^{\prime}, and O ? What can you say about the points B, B^{\prime}, and O ?
3. Connect point A to point B to make the line $L_{A B}$. Connect point A^{\prime} to point B^{\prime} to make the line $L_{A^{\prime} B^{\prime}}$. What is the relationship between $L_{A B}$ and $L_{A^{\prime} B^{\prime}}$?

Exit Ticket Sample Solutions

Let there be a rotation of 180 degrees about the origin. Point A has coordinates $(-2,-4)$, and point B has coordinates $(-3,1)$, as shown below.

1. What are the coordinates of Rotation (A) ? Mark that point on the graph so that Rotation $(A)=A^{\prime}$. What are the coordinates of Rotation (B) ? Mark that point on the graph so that Rotation $(B)=B^{\prime}$.
$A^{\prime}=(2,4), B^{\prime}=(3,-1)$
2. What can you say about the points $\boldsymbol{A}, \boldsymbol{A}^{\prime}$, and \boldsymbol{O} ? What can you say about the points $\boldsymbol{B}, \boldsymbol{B}^{\prime}$, and \boldsymbol{O} ?

The points A, A^{\prime}, and O are collinear. The points B, B^{\prime}, and O are collinear.
3. Connect point A to point B to make the line $L_{A B}$. Connect point A^{\prime} to point B^{\prime} to make the line $L_{A^{\prime} B^{\prime}}$. What is the relationship between $L_{A B}$ and $L_{A^{\prime} B^{\prime}}$?
$L_{A B} \| L_{A^{\prime} B^{\prime}}$.

Problem Set Sample Solutions

Use the following diagram for Problems 1-5. Use your transparency as needed.

1. Looking only at segment $B C$, is it possible that a 180° rotation would map $B C$ onto $B^{\prime} C^{\prime}$? Why or why not? It is possible because the segments are parallel.
2. Looking only at segment $A B$, is it possible that a 180° rotation would map $A B$ onto $A^{\prime} B^{\prime}$? Why or why not? It is possible because the segments are parallel.
3. Looking only at segment $A C$, is it possible that a 180° rotation would map $A C$ onto $A^{\prime} C^{\prime}$? Why or why not? It is possible because the segments are parallel.
4. Connect point B to point B^{\prime}, point C to point C^{\prime}, and point A to point A^{\prime}. What do you notice? What do you think that point is?

All of the lines intersect at one point. The point is the center of rotation, I checked by using my transparency.
5. Would a rotation map triangle $A B C$ onto triangle $A^{\prime} B^{\prime} C^{\prime}$? If so, define the rotation (i.e., degree and center). If not, explain why not.

Let there be a rotation 180° around point $(0,-1)$. Then, Rotation $(\triangle A B C)=\Delta A^{\prime} B^{\prime} C^{\prime}$.

Lesson 6:	Rotations of 180 Degrees
Date:	$10 / 28 / 14$

engage ${ }^{n y}$
6. The picture below shows right triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, where the right angles are at B and B^{\prime}. Given that $A B=A^{\prime} B^{\prime}=1$, and $B C=B^{\prime} C^{\prime}=2$, and that $A B$ is not parallel to $A^{\prime} B^{\prime}$, is there a 180° rotation that would map $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$? Explain.

No, because a 180° rotation of a segment will map to a segment that is parallel to the given one. It is given that $A B$ is not parallel to $A^{\prime} B^{\prime}$; therefore, a rotation of 180° will not map $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$.

Lesson 6:	Rotations of 180 Degrees
Date:	$10 / 28 / 14$

