Lesson 14: The Division Algorithm—Converting Decimal Division into Whole Number Division Using Fractions

Student Outcomes

- Students use the algorithm to divide multi-digit numbers with and without remainders. Students compare their answer to estimates to justify reasonable quotients.
- Students understand that when they "bring down" the next digit in the algorithm, they are distributing, recording, and shifting to the next place value.

Classwork

Example 1 (5 minutes)

Students will review how to divide a whole number by a number that is not a factor resulting in a non-whole number quotient. They will first estimate the quotient. Then, they will use the division algorithm to get an exact answer. Finally, they will compare the two to decide if the answer is reasonable.

Example 1
Divide: 31,218 $\div 132$.

132 \begin{tabular}{c}
236.5

31218.0
-264

$\frac{-391}{856}$

$\frac{-792}{660}$

$\frac{-660}{0}$
\end{tabular}

> As we divide, we can use our knowledge of place value to guide us.
> 312 hundreds $\div 132: 2$ hundreds
> 481 tens $\div 132: 3$ tens
> 858 ones $\div 132: 6$ ones
> 660 tenths $\div 132: 5$ tenths

- Estimate the quotient.
- Answers may vary. Possible estimates include the following: $30,000 \div 100=300$ or $30,000 \div 150=200$.
- How was solving this question similar to the questions you solved in Lessons 12 and 13?
- Answers may vary. To get the quotient in all questions, I used the division algorithm where I divided two whole numbers.
- How was solving this question different from the questions you solved in Lessons 12 and 13?
- Answers may vary. In this example, the divisor is not a factor of the dividend. I know this because the quotient is not a whole number. When I got to the ones place, I still had a remainder, so I placed a zero in the tenths place to continue dividing. Then, I divided 660 tenths by 132 ones. The answer to this question has a decimal in the quotient, but the other lessons had whole number quotients.

Example 2 (5 minutes)

- We have seen questions with decimals in the quotient. Now, let's discuss how we would divide when there are decimals in the dividend and divisor.

Please note that this question is quite difficult. Students will most likely struggle with this question for quite some time, so you may want to offer this question as a challenge.

Example 2

Divide: $974.835 \div 12.45$.

MP. 2 Point out that all whole number division that students have done up until now has involved dividing two quantities that are ultimately counting with the same unit, ones (e.g., 32,218 ones divided by 132 ones).

- Now, let's take a look at what this question is asking, including the units.
- 974 ones and 835 thousandths, 12 ones and 45 hundredths
- What do you notice about these two numbers?
- They do not have the same unit.
- How could we rewrite these numbers so that they have the same units?
- $974.835 \div 12.450$
- 974,835 thousandths, 12,450 thousandths
- Now, the division problem that we need to solve is 974,835 thousandths $\div 12,450$ thousandths.

Example 3 (5 minutes)

Example 3

A plane travels $3,625.26$ miles in 6.9 hours. What is the plane's unit rate?

- What is this question asking us to do?
- This question is asking me to divide the miles by hours so that I can find out how many miles the plane went in 1 hour, as we did in Module 1.
- How can we rewrite 3,625.26 (362,526 hundredths) and 6.9 (69 tenths) using the same units?
- First, I would rewrite the question as $3,625.26 \div 6.90$. This is the same as 362,526 hundredths $\div 690$ hundredths.
- Now we can solve by dividing $362,526 \div 690$.

525.4	
690	362526.0
	-3450
	1752
	-1380
	3726
	-3450
	2760
	- 2760
	0

- Let's check our answer to ensure that it is reasonable. What are some different ways that we can do this?
- We can multiply the quotient with the original divisor and see if we get the original dividend. $6.9 \times 525.4=3,625.26$.
- We could also estimate to check our answer. $3,500 \div 7=500$. Because we rounded down, we should expect our estimate to be a little less than the actual answer.

Exercises 1-7 (20 minutes)

Students can work on the problem set alone or in partners. Students should be estimating the quotient first and using the estimate to justify the reasonableness of their answer.

Exercises 1-7
Estimate the quotient first. Use the estimate to justify the reasonableness of your answer.

1. Daryl spent $\$ 4.68$ on each pound of trail mix. He spent a total of $\$ \mathbf{1 4 . 0 4}$. How many pounds of trail mix did he purchase?

Estimate: $15 \div 5=3$
$14.04 \div 4.68 \rightarrow 1,404$ hundredths $\div 468$ hundredths
$1,404 \div 468=3$
Our estimate of 3 shows that our answer of 3 is reasonable.
2. Kareem purchased several packs of gum to place in gift baskets for $\$ 1.26$ each. He spent a total of $\$ 8.82$. How many packs of gum did he buy?

Estimate: $9 \div 1=9$
$8.82 \div 1.26 \rightarrow 882$ hundredths $\div 126$ hundredths
$882 \div 126=7$ packs of gum
Our estimate of 9 shows that our answer of 7 is reasonable.
3. Jerod is making candles from beeswax. He has 132.72 ounces of beeswax. If each candle uses 8.4 ounces of beeswax, how many candles can he make? Will there be any wax left over?

Estimate: $120 \div \mathbf{8}=\mathbf{1 5}$
$132.72 \div 8.4 \rightarrow 13,272$ hundredths $\div 84$ tenths $\rightarrow 13,272$ hundredths $\div 840$ hundredths
$13,272 \div 840=15$ candles; there is wax left over.

840 | 15.8 |
| :---: |
| 13272 |
| -840 |
| -4200 |

Our estimate of 15 shows that our answer of 15.8 is reasonable.
4. There are 20.5 cups of batter in the bowl. If each cupcake uses $\mathbf{0 . 4}$ cups of batter, how many cupcakes can be made?

Estimate: $20 \div 0.5=40$
$20.5 \div 0.4 \rightarrow 205$ tenths $\div 4$ tenths

Only 51 cupcakes can be made. There is not quite enough for 52.
Our estimate of 40 shows that our answer of 51.25 is reasonable.
5. In Exercises 3 and 4, how were the remainders, or extra parts, interpreted?

In both Exercises 3 and 4, the remainders show that there was not quite enough to make another candle or cupcake. In the candle example, there was wax left over that could be saved for the next time there is more wax. However, in the cupcake example, the leftover batter could be used to make a smaller cupcake, but it would not count as another whole cupcake.
6. $159.12 \div 6.8$

Estimate: $160 \div 8=20$
$159.12 \div 6.8 \rightarrow 15,912$ hundredths $\div 68$ tenths $\rightarrow 15,912$ hundredths $\div 680$ hundredths

Our estimate of 20 shows that our answer of 23.4 is reasonable.
7. $\quad 167.67 \div 8.1$

Estimate: $160 \div \mathbf{8}=\mathbf{2 0}$
$167.67 \div 8.1 \rightarrow 16,767$ hundredths $\div 81$ tenths $\rightarrow 16,767$ hundredths $\div 810$ hundredths
20.7
$810 \underset{-16767.0}{1670}$
1620
-56 5670
$\begin{array}{r}-5670 \\ \hline 0\end{array}$

Our estimate of $\mathbf{2 0}$ shows that our answer of 20.7 is reasonable.

Closing (5 minutes)

- Describe the steps that you use to change a division question with decimals to a division question with whole numbers.
- If the divisor and or the dividend are not whole numbers, we find the largest common unit, smaller than one, which allows us to rewrite each as a whole number multiple of this common unit.
- Example:
$1,220.934$ ones $\div 54.34$ ones
$12,209.34$ tenths $\div 543.4$ tenths
122,093.4 hundredths $\div 5,434$ hundredths
$1,220,934$ thousandths $\div 54,340$ thousandths
We could keep going, and both the dividend and divisor would still be whole numbers, but we were looking for the largest common unit that would make this happen.

Exit Ticket (5 minutes)

\qquad

Lesson 14: The Division Algorithm—Converting Decimal Division

 into Whole Number Division Using Fractions
Exit Ticket

1. Lisa purchased almonds for $\$ 3.50$ per pound. She spent a total of $\$ 14.70$. How many pounds of almonds did she purchase?
2. Divide: $125.01 \div 5.4$. Then, check your answer for reasonableness.

Exit Ticket Sample Solutions

1. Lisa purchased almonds for $\$ 3.50$ per pound. She spent a total of $\$ 14.70$. How many pounds of almonds did she purchase?

Lisa purchased 4. 2 pounds of almonds.
2. Divide: $125.01 \div 5.4$. Then, check your answer for reasonableness.

The quotient of 125.01 and 5.4 is 23.15 .
Estimate: $125 \div 5=\mathbf{2 5}$
My estimate of 25 is near 23, which shows that my answer is reasonable.

Problem Set Sample Solutions

1. Aslan purchased 3.5 lb . of his favorite mixture of dried fruits to use in a trail mix. The total cost was $\$ 16.87$. How much does the fruit cost per pound?
$16.87 \div 3.5 \rightarrow 1,687$ hundredths $\div 350$ hundredths

350 \begin{tabular}{c}
4.82

1687.00
$\frac{-1400}{2870}$
$\frac{-2800}{700}$
$\frac{-700}{0}$

\end{tabular}

The dried fruit costs $\$ 4.82$ per pound.
2. Divide: $994.14 \div 18.9$.
$994.14 \div 18.9 \rightarrow 99,414$ hundredths $\div 1,890$ hundredths
52.6
$1 8 9 0 \longdiv { 9 9 4 1 4 . 0 }$
$\underline{-9450}$
4914
-3780
11340
$\begin{array}{r}-11340 \\ \hline 0\end{array}$
$994.14 \div 18.9=52.6$

