Name \qquad Date \qquad

1. $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$. Use the picture to answer the question below.

Describe a sequence of rigid motions that would prove a congruence between $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$.
2. Use the diagram to answer the question below.

$$
k|\mid l
$$

Line k is parallel to line $l . m \angle E D C=41^{\circ}$ and $m \angle A B C=32^{\circ}$. Find the $m \angle B C D$. Explain in detail how you know you are correct. Add additional lines and points as needed for your explanation.
3. Use the diagram below to answer the questions that follow. Lines L_{1} and L_{2} are parallel, $L_{1} \| L_{2}$. Point N is the midpoint of segment $G H$.

a. If $\angle I H M=125^{\circ}$, what is the measure of $\angle I H J$? $\angle J H N$? $\angle N H M$?
b. What can you say about the relationship between $\angle 4$ and $\angle 6$? Explain using a basic rigid motion. Name another pair of angles with this same relationship.
c. What can you say about the relationship between $\angle 1$ and $\angle 5$? Explain using a basic rigid motion. Name another pair of angles with this same relationship.

A Progression Toward Mastery
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Assessment } & \begin{array}{l}\text { STEP 1 } \\ \text { Missing or incorrect } \\ \text { answer and little } \\ \text { evidence of } \\ \text { reasoning or } \\ \text { application of } \\ \text { mathematics to } \\ \text { solve the problem. }\end{array} & \begin{array}{l}\text { STEP 2 } \\ \text { Missing or incorrect } \\ \text { answer but } \\ \text { evidence of some } \\ \text { reasoning or } \\ \text { application of } \\ \text { mathematics to } \\ \text { solve the problem. }\end{array} & \begin{array}{l}\text { STEP 3 } \\ \text { A correct answer } \\ \text { with some evidence } \\ \text { of reasoning or } \\ \text { application of } \\ \text { mathematics to } \\ \text { solve the problem, } \\ \text { or an incorrect }\end{array} & \begin{array}{l}\text { STEP 4 } \\ \text { A correct answer } \\ \text { supported by } \\ \text { substantial } \\ \text { evidence of solid } \\ \text { reasoning or } \\ \text { application of }\end{array} \\ \text { mathematics to } \\ \text { substantial } \\ \text { solve the problem. }\end{array}\right\}$

3	a 8.G.A. 5	Student is unable to respond to the questions or leaves items blank. Student shows no reasoning or application of mathematics to solve the problem.	Student makes calculation errors. Student answers part of the question correctly, i.e., $\angle I H M=\angle J H N=$ 125° but omits $\angle I H J=\angle N H M=55^{\circ}$ or answers with all four angles as the same measure.	Student shows some application of mathematics to solve the problem. Student makes calculation errors. Student reverses the answers, i.e., $\angle I H M=\angle J H N=55^{\circ}$ or $\angle I H J=\angle N H M=125^{\circ} .$	Student answers correctly with $\angle I H M=\angle J H N=125^{\circ}$ and $\angle I H J=\angle N H M=55^{\circ}$ for measures of ALL four angles.
	b $\text { 8.G.A. } 5$	Student is unable to respond to the questions or leaves items blank. Student shows no reasoning or application of mathematics to solve the problem. Student does not include a written explanation.	Student answers the name of the angles incorrectly. Student incorrectly identifies the other angles with the same relationship. Student includes a written explanation. Student references a rigid motion, translation, rotation, reflection. Written explanation is not mathematically based, e.g., "they look the same."	Student may answer the name of the angles incorrectly but correctly identifies the other angles with the same relationship. Student uses some mathematical vocabulary in written explanation. Student references rotation but may not reference all of the key points in written explanation.	Student answers correctly by calling the angles Alternate Interior Angles. Student names $\angle 3$ and $\angle 5$ as angles with the same relationship. Student uses mathematical vocabulary in written explanation. Student references ALL of the following key points: N is the midpoint of $H G$, rotation of 180° around N, and rotation is anglepreserving in the written explanation. Written explanation is thorough and complete.
	C $\text { 8.G.A. } 5$	Student is unable to respond to the questions or leaves items blank. Student shows no reasoning or application of mathematics to solve the problem. Student does not include a written explanation.	Student ma answers the name of the angles incorrectly. Student incorrectly identifies the other angles with the same relationship. Student includes a written explanation. Student references a rigid motion, translation, rotation, reflection. Written explanation is not mathematically based, e.g., "they look the same."	Student identifies the name of the angles incorrectly but does correctly identify the other angles with the same relationship. Student uses some mathematical vocabulary in written explanation. Student references translation but may not reference all of the key points in written explanation.	Student answers correctly by calling the angles corresponding angles. Student names $\angle 2$ and $\angle 6$ (or $\angle 3$ and $\angle 7$ or $\angle 4$ and $\angle 8$) as angles with the same relationship. Student uses mathematical vocabulary in written explanation. Student references ALL of the following key points: translation along vector $H G$, translation maps parallel lines to parallel lines, and translation is angle-preserving in written explanation. Written explanation is thorough and complete.

Module 2: Date: The Concept of Congruence 10/28/14

Name \qquad Date \qquad

1. $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$. Use the picture to answer the question below.

Describe a sequence of rigid motions that would prove a congruence between $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$.

VET T BE THE TRANSLATION AWNG $\overrightarrow{A^{\prime} A}$ SO THAT $T\left(A^{\prime}\right)=A$. LET R BE THE ROTANIA AROID A, d DEGREES SO TH LAT $R\left(A^{\prime} B^{\prime}\right)=A B$. BY HYPOTHESIS $|A R|=\left|A^{\prime} B^{\prime}\right|$. LET A RE THE REFIEGINN ACROSS LAB. AGAIN BY HYPOtHESIS $|\angle A|=|\angle A|, \angle B|=|\angle B|$, SO THE COMPOSITIIA N-R-T wILL MAP $\triangle A^{\prime} B^{\prime} C^{\prime}$ To $\triangle A B C$, ie, $\Lambda\left(R\left(T\left(\triangle A^{\prime} B^{\prime} C^{\prime}\right)\right)\right)=\triangle A B C$.
2. Use the diagram to answer the question below.

$$
k|\mid l
$$

Line k is parallel to line $l . m \angle E D C=41^{\circ}$ and $m \angle A B C=32^{\circ}$. Find the $m \angle B C D$. Explain in detail how you know you are correct. Add additional lines and points as needed for your explanation.

LET F BE A POINT ad LINE k SO THAT $\angle D C F$ IS A STRANEIHT PEEVE. THEN BECAUSE $K / / l, \angle E D C \cong \angle C F A$ AND HAVE EQUAL MEASURE. $\angle A B C$ AND $\angle C F A ~ A R E ~ T H E ~$ REMOTE INTERIOR ANELES OF $\triangle B L F$ WHICH MEANS $\angle B C D=\angle A B C+C F A$. THEREFORE $\angle B C D=32+41=73^{\circ}$.
3. Use the diagram below to answer the questions that follow. Lines L_{1} and L_{2} are parallel, $L_{1} \| L_{2}$. Point N is the midpoint of segment $G H$.

a. If $\angle I H M=125^{\circ}$, what is the measure of $\angle I H J$? $\angle J H N$? $\angle N H M$?

$$
\angle H H J=55^{\circ} \quad \angle J H N=125^{\circ} \quad \angle N H M=55^{\circ}
$$

b. What can you say about the relationship between $\angle 4$ and $\angle 6$? Explain using a basic rigid motion. Name another pair of angles with this same relationship.
$\angle 4 \& \angle 6$ ARE ALTERNATE NTERIDR ANGLES THAT ARE EQUAL BECAUSE L_{1} / L_{2}. LET R BE A ROTATION OF 180° AROUND POINT N. THEN $R(N)=N ; R\left(L_{3}\right)=L_{3}$, AND $R\left(L_{1}\right)=L_{2}$. ROANS ARE DEGREE PRESERVING SO $R(\angle 4)=\angle 6$.
$\angle 38 \angle 5$ ARE ALSO ALTERNATE INTERIOR ANGUS THAT DREE EQUAL.
c. What can you say about the relationship between $\angle 1$ and $\angle 5$? Explain using a basic rigid motion. Name another pair of angles with this same relationship.
$\angle 1 \& \angle 5$ RE CORRESPONDNG ANGUS THAT ARE EQUAL BECAUSE $L_{1} / / L_{2}$. LET T BE THE TRANSLANON ALONG VECTOR $\overrightarrow{Q H}$. THEN $T\left(L_{2}\right)=L_{1}$ AND $T(\angle 5)=\angle 1$.
$\angle 3 \& \angle 7$ ARE ALSO CORRESPONDING ANGLES THAT ARE EQUAL.

