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Lesson 15:  Justifying the Geometric Effect of Complex Multiplication

Classwork 
Opening Exercise
For each exercise below, compute the product .  Then, plot the complex numbers , , and  on the axes provided.
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For each part (a), (b), and (c), draw line segments connecting each point  and  to the origin.  Determine a relationship between the arguments of the complex numbers , , and . 


Exercises
Let  and .  
Calculate the product .






Calculate the moduli , , and .











What can you conclude about the quantities , , and ?







What does the result of Exercise 1 tell us about the geometric effect of the transformation ?








[image: ]If  and  are the complex numbers with the specified arguments and moduli, locate the point that represents the product on the provided coordinate axes.
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Problem Set Lesson Summary 
For complex numbers  and ,
The modulus of the product is the product of the moduli: 

The argument of the product is the sum of the arguments:





In the lesson, we justified our observation that the geometric effect of a transformation  is a rotation by  and a dilation by  for a complex number  that is represented by a point in the first quadrant of the coordinate plane.  In this exercise, we will verify that this observation is valid for any complex number .  For a complex number , we only considered the case where  and .  There are eight additional possibilities we need to consider. 
Case 1:  The point representing  is the origin.  That is,  and
In this case, explain why  has the geometric effect of rotation by  and dilation by 
Case 2:  The point representing  lies on the positive real axis.  That is,  and .
In this case, explain why  has the geometric effect of rotation by  and dilation by 
Case 3:  The point representing  lies on the negative real axis.  That is,  and 
In this case, explain why  has the geometric effect of rotation by  and dilation by 
Case 4:  The point representing  lies on the positive imaginary axis.  That is,  and 
In this case, explain why  has the geometric effect of rotation by  and dilation by 
Case 5:  The point representing  lies on the negative imaginary axis.  That is,  and 
In this case, explain why  has the geometric effect of rotation by  and dilation by 
[image: ]Case 6:  The point representing  lies in the second quadrant.  That is,  and   Points representing  , , , and  are shown in the figure below.

[image: ]For convenience, rename the origin  and let , ,, , and , as shown below.  Let 
Argue that .
Express the argument of  in terms of 
Express  in terms of , where 
Explain why 
Combine your responses from parts (ii), (iii) and (iv) to express  in terms of  and .

Case 7:  The point representing  lies in the third quadrant.  That is,  and 
[image: ]Points representing  , , , and  are shown in the figure below.

For convenience, rename the origin  and let , ,, , and , as shown below.  Let 
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Argue that .
Express the argument of  in terms of 
Express  in terms of , where 
Explain why 
Combine your responses from parts (ii), (iii), and (iv) to express  in terms of  and .
Case 8:  The point representing  lies in the fourth quadrant.  That is,  and 
Points representing  , , , and  are shown in the figure below.
[image: ]








For convenience, rename the origin , and let , ,, , and , as shown below.  Let 
[image: ]












Argue that .
Express  in terms of , where 
Explain why 
Express  in terms of 
Combine your responses from parts (ii), (iii), and (iv) to express  in terms of  and .

Summarize the results of Problem 1, parts (a)–(h) and the lesson.
Find a linear transformation  that will have the geometric effect of rotation by the specified amount without dilating.
 counterclockwise
counterclockwise
 counterclockwise
1 counterclockwise
 clockwise
 clockwise
 clockwise
clockwise

Suppose that we have linear transformations  and  as specified below.  Find a formula for  for complex numbers .
 and 
 and 
 and 
 and  for real numbers  and .
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