Name \qquad Date \qquad

1. Each of the illustrations on the next page shows in black a plane figure consisting of the letters F, R, E, and D evenly spaced and arranged in a row. In each illustration, an alteration of the black figure is shown in gray. In some of the illustrations, the gray figure is obtained from the black figure by a geometric transformation consisting of a single rotation. In others, this is not the case.
a. Which illustrations show a single rotation?
b. Some of the illustrations are not rotations or even a sequence of rigid transformations. Select one such illustration and use it to explain why it is not a sequence of rigid transformations.

雷 思 D Illustration 3

Illustration 5

Illustration 6

Illustration 4
2. In the figure below, $\overline{C D}$ bisects $\angle A C B, A B=B C, \angle B E C=90^{\circ}$, and $\angle D C E=42^{\circ}$.

Find the measure of angle $\angle A$.

3. In the figure below, $\overline{A D}$ is the angle bisector of $\angle B A C . \overline{B A P}$ and $\overline{B D C}$ are straight lines, and $\overline{A D} \| \overline{P C}$. Prove that $A P=A C$.

4. The triangles $\triangle A B C$ and $\triangle D E F$ in the figure below are such that $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}$, and $\angle A \cong \angle D$.

a. Which criteria for triangle congruence (ASA, SAS, SSS) implies that $\triangle A B C \cong \triangle D E F$?
b. Describe a sequence of rigid transformations that shows $\triangle A B C \cong \triangle D E F$.
5.
a. Construct a square $A B C D$ with side $\overline{A B}$. List the steps of the construction.

b. Three rigid motions are to be performed on square $A B C D$. The first rigid motion is the reflection through line $\overline{B D}$. The second rigid motion is a 90° clockwise rotation around the center of the square.

Describe the third rigid motion that will ultimately map $A B C D$ back to its original position. Label the image of each rigid motion A, B, C, and D in the blanks provided.

Rigid Motion 1 Description: Reflection through line $\overline{B D}$

Rigid Motion 2 Description: 90° clockwise rotation around the center of the square.

Rigid Motion 3 Description:
6. Suppose that $A B C D$ is a parallelogram and that M and N are the midpoints of $\overline{A B}$ and $\overline{C D}$, respectively. Prove that $A M C N$ is a parallelogram.

A Progression Toward Mastery
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Assessment } & \begin{array}{l}\text { STEP 1 } \\ \text { Missing or incorrect } \\ \text { answer and little } \\ \text { evidence of } \\ \text { reasoning or } \\ \text { application of } \\ \text { mathematics to } \\ \text { solve the problem. }\end{array} & \begin{array}{l}\text { STEP 2 } \\ \text { Missing or incorrect } \\ \text { answer but } \\ \text { evidence of some } \\ \text { reasoning or } \\ \text { application of } \\ \text { mathematics to } \\ \text { solve the problem. }\end{array} & \begin{array}{l}\text { STEP 3 } \\ \text { A correct answer } \\ \text { with some evidence } \\ \text { of reasoning or } \\ \text { application of } \\ \text { mathematics to } \\ \text { solve the problem, } \\ \text { or an incorrect }\end{array} & \begin{array}{l}\text { STEP 4 } \\ \text { A correct answer } \\ \text { supported by } \\ \text { substantial }\end{array} \\ \text { evidence of solid } \\ \text { reasoning or } \\ \text { application of } \\ \text { mathematics to }\end{array}\right\}$

4	$\begin{gathered} \text { a-b } \\ \text { G-CO.B. } 7 \\ \text { G-CO.B. } 8 \end{gathered}$	Student provides a response that shows little or no evidence of understanding for parts (a) or (b).	Student provides a response that shows the correct triangle congruence criteria in part (a) and provides a sequence that contains more than one error in part (b).	Student provides a response that shows the correct triangle congruence criteria in part (a) and provides a sequence that contains an error in part (b).	Student provides a response that shows the correct triangle congruence criteria in part (a) and provides any valid sequence of transformations in part (b).
5	$\begin{gathered} \text { a-b } \\ \text { G-CO.A. } 3 \\ \text { G-CO.D. } 13 \end{gathered}$	Student draws a construction that is not appropriate and provides an underdeveloped list of steps. Student provides a response that contains errors with the vertex labels and the description for Rigid Motion 3 in part (b).	Student draws a construction but two steps are either missing or incorrect in the construction or list of steps. Student correctly provides vertex labels in the diagram for part (b) but gives an incorrect Rigid Motion 3 description. OR Student correctly describes the Rigid Motion 3 but provides incorrect vertex labels.	Student draws a construction but one step is missing or incorrect in the construction or in list of steps, such as the marks to indicate the length of side $\overline{A D}$. Student correctly provides vertex labels in the diagram for part (b) but gives an incorrect Rigid Motion 3 description. OR Student correctly describes the Rigid Motion 3 but provides incorrect vertex labels.	Student draws a correct construction showing all appropriate marks, and correctly writes out the steps of the construction. Student correctly provides vertex labels in the diagram for part (b) and gives a correct Rigid Motion 3 description.
6	G-CO.C. 11	Student writes a proof that demonstrates little or no understanding of the method needed to achieve the conclusion.	Student writes a proof that demonstrates an understanding of the method needed to reach the conclusion but two steps are missing or incorrect.	Student writes a proof that demonstrates an understanding of the method needed to reach the conclusion but one step is missing or incorrect.	Student writes a complete and correct proof that clearly leads to the conclusion that $A M C N$ is a parallelogram.

Name \qquad Date \qquad

1. Each of the illustrations on the next page shows in black a plane figure consisting of the letters F, R, E, and D evenly spaced and arranged in a row. In each illustration, an alteration of the black figure is shown in gray. In some of the illustrations, the gray figure is obtained from the black figure by a geometric transformation consisting of a single rotation. In others, this is not the case.
a. Which illustrations show a single rotation?

b. Some of the illustrations are not rotations or even a sequence of rigid transformations. Select one such illustration and use it to explain why it is not a sequence of rigid transformations.

Illustration/ shows translations of individual letters F, R, E, and D; but each letter is translated a different distance. Since translation requires a shift of the entire plane by the same distance, Innstration) does not qualify.

Illustration 5

Illustration 6
2. In the figure below, $\overline{C D}$ bisects $\angle A C B, A B=B C, \angle B E C=90^{\circ}$, and $\angle D C E=42^{\circ}$.

Find the measure of angle $\angle A$.

Label the angles as shown.

$$
\begin{aligned}
& \text { abel the angles as shown } \\
& (\angle A C D \cong \angle D C B \text { since } \overline{C D} \text { bisects } \angle A C B)
\end{aligned}
$$

Since $A B=B C, \triangle A B C$ is isosceles, therefore $2 x=a$.

$$
m \angle A+m \angle A C E+m \angle E=180^{\circ}
$$

$a+(x+42)+90=180$
$2 x+x+132=180$

$$
\begin{aligned}
x & =16 \\
\text { Since } a & =2 x, m \angle A=32^{\circ}
\end{aligned}
$$

3. In the figure below, $\overline{A D}$ is the angle bisector of $\angle B A C . \overline{B A P}$ and $\overline{B D C}$ are straight lines, and $\overline{A D} \| \overline{P C}$. Prove that $A P=A C$.

Label w, x, y and z as shown.
Statements Reasons

1. $\overline{A D}$ is the angle bisector of $\angle B A C$
2. $\overline{A D} \| \overline{P C}$
3. $z=w$
4. $z=y$
5. $w=x$
6. $x=y$
7. $\triangle A C P$ is isocices

Given
Given

Definition f angle bisector If two porilel lines are cut by a transuewal, alt. int. angles are equal in measure.
If two parallel limes are cut by a trow verbal, corr. angles are equal in measure.
Transitive property
Base angles ave congruent Definition of isosales triangle
4. The triangles $\triangle A B C$ and $\triangle D E F$ in the figure below are such that $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}$, and $\angle A \cong \angle D$.

a. Which criteria for triangle congruence (ASA, SAS, SSS) implies that $\triangle A B C \cong \triangle D E F$?
Side-Angle-Side
b. Describe a sequence of rigid transformations that shows $\triangle A B C \cong \triangle D E F$.

1. Translate $\triangle D E F$ so that F is mapped onto C 2. Rotate the image of $\triangle D E F$ about C so the E is mapped onto B
2. Reflect the image of the rotation across $\overleftrightarrow{B C}$
3.

a. Construct a square $A B C D$ with side $\overline{A B}$. List the steps of the construction.

1. Extend $\overline{A B}$ in both directions.
2. Construct a per pend icular bisector to $A B$ through A; construct a perpendicular bisector to $A B$ through B. 3. Construct a circle with center A and radius $A B$; construct a circle with center B and radius $A B$.
3. Select a point where circle A meets the perpendicular through A and call that point D. On the same side of $A B$ as D, select the point where circle B meets the Perpendicular through B and call that point C. 5. Draw segment $\angle D$.
b. Three rigid motions are to be performed on square $A B C D$. The first rigid motion is the reflection through line $\overline{B D}$. The second rigid motion is a 90° clockwise rotation around the center of the square.

Describe the third rigid motion that will ultimately map $A B C D$ back to its original position. Label the image of each rigid motion A, B, C, and D in the blanks provided.

Rigid Motion 1 Description: Reflection through line $\overline{B D}$

Rigid Motion 2 Description: 90° clockwise rotation around the center of the square.

Rigid Motion 3 Description:

6. Suppose that $A B C D$ is a parallelogram and that M and N are the midpoints of $\overline{A B}$ and $\overline{C D}$, respectively. Prove that $A M C N$ is a parallelogram.

Statements

1. Mand Nave the Mand N are the Giver
midpoints of $\overline{A B}$ and Gin $\overline{C D}$
2. $A B C D$ is a parallelogram 3. $A B=D$
3. $N C=\frac{1}{2} D C$
4. $A M=\frac{1}{2} A B$
5. $A M=\frac{1}{2} D C$
6. $A M=N C$
7. $\overline{A B} \| \overline{D C}$
8. $\overline{A M} \| \overline{N C}$
9. AMCN is a parallelogram

Reasons
opposite sines of a paralulugrm are congruent
N is the mid riot of $D C$
M is the midpoint of $A B$
Substitution
Transitive Propaty
Definition of a parallelogram-
M is on line $A B, N$ is on line $D C$
opposite sides ane equal in length and parallel

