

### **Student Outcomes**

Students interpret expected value in context.

## **Lesson Notes**

This lesson develops the interpretation of the expected value as a long-run average of the value of a discrete random variable. As previously observed, the more times an event occurs, the closer the distribution of outcomes gets to the probability distribution and the closer the average value of all the outcomes will get to the expected value. In this lesson, students calculate the expected value of the sum of two dice, roll the dice 10 times to calculate the average value, and then observe that rolling 40 times produces an average value closer to the expected value. Students interpret the expected value of a discrete distribution in the context of the problem. Each student will need two dice.

# Classwork

## Exploratory Challenge 1/Exercise 1 (2 minutes)

Allow students to read and answer Exercise 1.

Exploratory Challenge 1/Exercises 1-8

Recall the following problem from the Problem Set in Lesson 7.

Suppose two dice are rolled. The sum of the two numbers showing is a discrete random variable. The following table displays the probability distribution of this random variable.

| Sum rolled  | 2              | 3              | 4              | 5             | 6       | 7             | 8       | 9             | 10             | 11             | 12             |
|-------------|----------------|----------------|----------------|---------------|---------|---------------|---------|---------------|----------------|----------------|----------------|
| Probability | $\frac{1}{36}$ | $\frac{1}{18}$ | $\frac{1}{12}$ | $\frac{1}{9}$ | 5<br>36 | $\frac{1}{6}$ | 5<br>36 | $\frac{1}{9}$ | $\frac{1}{12}$ | $\frac{1}{18}$ | $\frac{1}{36}$ |

1. If you rolled two dice and added the numbers showing a large number of times, what would you expect the average sum to be? Explain why.

The expected sum of the two rolled dice is as follows

 $2\left(\frac{1}{36}\right) + 3\left(\frac{1}{18}\right) + 4\left(\frac{1}{12}\right) + 5\left(\frac{1}{9}\right) + 6\left(\frac{5}{36}\right) + 7\left(\frac{1}{6}\right) + 8\left(\frac{5}{36}\right) + 9\left(\frac{1}{9}\right) \\ + 10\left(\frac{1}{12}\right) + 11\left(\frac{1}{18}\right) + 12\left(\frac{1}{36}\right) = 7$ 

The expected average sum would be 7 because, after a large number of rolls, the distribution of sums would resemble the probability distribution above.

### Scaffolding:

- For students who struggle, consider using a modified version of this exercise that might include pulling different colored chips or marbles out of a bag or using four-sided dice.
- An extension for advanced students may be given as follows: Construct your own hypothetical discrete random variable with a probability distribution that also has an expected value of 7.



Interpreting Expected Value 4/22/15





## Exploratory Challenge 1/Exercises 2–4 (5 minutes)

Allow students to roll two dice, recording the sum for each of 10 rolls. Students should then use their results to answer Exercises 3 and 4.

| Sum rolled                                                                            | 2                    | 3               | 4       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                 | 7        | 8       | 9         | 10                  | 11      | 12             |
|---------------------------------------------------------------------------------------|----------------------|-----------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|---------|-----------|---------------------|---------|----------------|
| Tally marks                                                                           |                      |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |          |         |           |                     |         |                |
| Relative frequency                                                                    |                      |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |          |         |           |                     |         |                |
| Student responses will vary. He                                                       | ere is on            | e examj         | ole.    | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [                 | [        |         | [         | [                   | [       |                |
| Sum rolled                                                                            | 2                    | 3               | 4       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                 | 7        | 8       | 9         | 10                  | 11      | 12             |
| Tally marks                                                                           |                      | -               |         | Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |          |         |           | —                   |         |                |
| Relative frequency                                                                    | 0                    | 0.1             | 0.1     | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2               | 0.1      | 0       | 0.2       | <b>0</b> . <b>1</b> | 0       | 0              |
| What is the average sum of the answers will vary. For the example $3(0, 1) + 4(0, 1)$ | se 10 ro<br>mple abo | lls?<br>we, the | averag  | e of the heat of | e sum f           | or these | e 10 ro | lls is as | follow              | s<br>4  |                |
| 3(0.1) + 4(0.1)                                                                       | ) + 5( <b>(</b>      | 0.2) +          | 6(0.2   | ) + 7(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ( <b>0</b> . 1) - | F 9(0.:  | 2) + 1  | LO(0.1)   | ) = 6.              | 4       |                |
| now uses this average compare                                                         | e to the             | expecte         | u value | : III EXe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t ho the          | r Are y  | ou surp | niseu?    | wriy O              | of 7 in | iut:<br>Everci |

## Exploratory Challenge 1/Exercises 5–7 (5 minutes)

Allow students to roll two dice, recording the sum of each of the 10 rolls. Combine the results of these 10 rolls to the previous 10 rolls in Exercise 2. Students should then use their combined results of the 20 rolls to answer Exercises 6 and 7.

| Roll the two dice 10 more previous 10 rolls for a tot | e times,<br>al of 20 | recordin<br>sums. | g the su | ms. Cor | nbine th | e sums o | of these | 10 rolls | with the | e sums c | of the |
|-------------------------------------------------------|----------------------|-------------------|----------|---------|----------|----------|----------|----------|----------|----------|--------|
| Sum rolled                                            | 2                    | 3                 | 4        | 5       | 6        | 7        | 8        | 9        | 10       | 11       | 12     |
| Tally marks                                           |                      |                   |          |         |          |          |          |          |          |          |        |
| Relative frequency                                    |                      |                   |          |         |          |          |          |          |          |          |        |
| Student responses will va                             | ry. Here             | is one e          | example. |         |          |          |          |          |          |          |        |
| Sum rolled                                            | 2                    | 3                 | 4        | 5       | 6        | 7        | 8        | 9        | 10       | 11       | 12     |
| Tally marks                                           |                      |                   |          |         | ГЖĮ      |          |          |          |          |          |        |
| Relative frequency                                    | 0                    | 0.15              | 0.05     | 0.15    | 0.25     | 0.20     | 0        | 0.10     | 0.10     | 0        | 0      |





104

Lesson 8:

Date:

PRECALCULUS AND ADVANCED TOPICS



## Exploratory Challenge 1/Exercise 8 (5 minutes)

Divide the class into pairs. The partners should combine their rolls for a total of 40 rolls. If there are an odd number of students, create one group of three students. The group of three students will combine their rolls for a total of 60 rolls. Students should then find the average.

| Sum rolled                                                                 | 2                                  | 3                                           | 4                                               | 5                              | 6                          | 7                           | 8               | 9              | 10              | 11               | 12               |
|----------------------------------------------------------------------------|------------------------------------|---------------------------------------------|-------------------------------------------------|--------------------------------|----------------------------|-----------------------------|-----------------|----------------|-----------------|------------------|------------------|
| Frequency                                                                  |                                    |                                             |                                                 |                                |                            |                             |                 |                |                 |                  |                  |
| Relative frequency                                                         |                                    |                                             |                                                 |                                |                            |                             |                 |                |                 |                  |                  |
| Student responses v                                                        | vill vary.                         | Here is o                                   | one exam                                        | nple.                          |                            |                             |                 |                |                 |                  |                  |
|                                                                            |                                    |                                             |                                                 |                                |                            |                             |                 |                |                 |                  |                  |
| Sum rolled                                                                 | 2                                  | 3                                           | 4                                               | 5                              | 6                          | 7                           | 8               | 9              | 10              | 11               | 12               |
| Sum rolled<br>Frequency                                                    | 2<br>0                             | 3<br>3                                      | 4<br>3                                          | 5<br>6                         | 6<br>8                     | 7<br>5                      | 8<br>5          | 9<br>4         | 10<br>4         | 11<br>1          | 12<br>1          |
| Sum rolled<br>Frequency<br>Relative frequency                              | 2<br>0<br>0                        | 3<br>3<br>0.075                             | 4<br>3<br>0.075                                 | 5<br>6<br>0.15                 | 6<br>8<br>0.20             | 7<br>5<br>0.125             | 8<br>5<br>0.125 | 9<br>4<br>0.10 | 10<br>4<br>0.10 | 11<br>1<br>0.025 | 12<br>1<br>0.025 |
| Sum rolled<br>Frequency<br>Relative frequency<br><i>The average sum fo</i> | 2<br>0<br>0<br>r these 4<br>3(0,07 | 3<br>3<br>0.075<br>40 rolls is<br>(5) + 4(0 | 4<br>3<br>0.075<br><i>as follow</i><br>0.075) + | 5<br>6<br>0.15<br>vs<br>5(0.15 | 6<br>8<br>0.20<br>) + 6(0, | 7<br>5<br>0.125<br>2) + 7(0 | 8<br>5<br>0.125 | 9<br>4<br>0.10 | 10<br>4<br>0.10 | 11<br>1<br>0.025 | 12<br>1<br>0.025 |



Interpreting Expected Value 4/22/15





Lesson 8

**M5** 

# Exploratory Challenge 2/Exercise 9 (5 minutes)

Now assign two pairs to work together (four students). The pairs should combine their rolls for a total of 80 rolls. Students should then find the average sum.

| Exploratory Challenge                                  | 2/Exercis                                  | ies 9–12                           |                                  |                                  |                               |                      |                       |                     |           |            |            |
|--------------------------------------------------------|--------------------------------------------|------------------------------------|----------------------------------|----------------------------------|-------------------------------|----------------------|-----------------------|---------------------|-----------|------------|------------|
| 9. Combine the sum the sum for these Student responses | s of your<br>80 rolls<br>s <i>will var</i> | 40 rolls<br>y. Here is             | above w<br>s one exc             | ith those<br>ample.              | of anoth                      | er pair foi          | r a total o           | f 80 rolls          | . Find th | ie average | e value of |
| Sum rolled                                             | 2                                          | 3                                  | 4                                | 5                                | 6                             | 7                    | 8                     | 9                   | 10        | 11         | 12         |
| Frequency                                              | 0                                          | 6                                  | 4                                | 13                               | 14                            | 11                   | 9                     | 6                   | 12        | 3          | 2          |
| Relative frequency                                     | 0                                          | 0.075                              | 0.05                             | 0.1625                           | 0.175                         | 0.1375               | 0.1125                | 0.075               | 0.15      | 0.0375     | 0.025      |
| The average sum                                        | for these<br>3(0<br>+ 8(0                  | 2 80 rolls<br>0.075) +<br>.1125) + | is as foll<br>4(0.05<br>- 9(0.0' | ow<br>5) + 5(0.<br>75) + 10<br>= | 1625) +<br>(0.15) -<br>7.0375 | - 6(0.17<br>+ 11(0.0 | 5) + 7(0<br>0375) + 3 | . 1375)<br>12(0. 02 | 5)        |            |            |

## Exploratory Challenge 2/Exercises 10–11 (10 minutes)

Allow time for one person from each group of four students to put the results in a class chart on the board. The use of tally marks may aid students in combining their results. After the class chart is complete, allow students time to calculate the relative frequency for each sum rolled and to calculate the expected sum of the class rolls.

| Sum rolled  |             | 2 3            | 4          | 5        | 6          | 7          | 8             | 9      | 10     | 11     | 12    |
|-------------|-------------|----------------|------------|----------|------------|------------|---------------|--------|--------|--------|-------|
| Frequency   |             |                |            |          |            |            |               |        |        |        |       |
| Probability |             |                |            |          |            |            |               |        |        |        |       |
| Student res | oonses will | vary. Her<br>3 | e is one e | xample f | for a clas | s of 20 st | tudents.<br>8 | 9      | 10     | 11     | 12    |
| Frequency   | 7           | 27             | 33         | 48       | 60         | 62         | 47            | 43     | 39     | 23     | 11    |
| Probability | 0.0175      | 0.0675         | 0.0825     | 0.12     | 0.15       | 0.155      | 0.1175        | 0.1075 | 0.0975 | 0.0575 | 0.027 |
|             |             |                |            |          |            |            |               |        |        |        |       |





Date:

Lesson 8

M5

Allow time for each group of students to discuss Exercise 11. Then, ask students to share their ideas. Use this opportunity to check for understanding of the lesson.

11. Think about your answer to Exercise 1. What do you notice about the averages you have calculated as the number of rolls increase? Explain why this happens.

As the number of rolls increase, the average value approaches the expected value. This happens because as the number of observed values of the random variable increase, the relative frequencies become closer to the actual probabilities in the probability distribution. The expected value of a discrete random variable is a long-run average value for the variable.

## Exploratory Challenge 2/Exercise 12 (5 minutes)

MP.3

Before having students complete Exercise 12, be sure to discuss that the interpretation for the expected value should include the long-run aspect of probability. The interpretation should also be written in the context related to the discrete random variable. Then, allow time for students to work Exercise 12. When students are finished, discuss the answer.





Interpreting Expected Value 4/22/15



## Closing (3 minutes)

- The expected value is the long-run mean of a discrete random variable.
- The interpretation of an expected value must contain the context related to the discrete random variable.
- Ask students to summarize the key ideas of the lesson in writing or by talking to a neighbor. Use this as an
  opportunity to informally assess student understanding. The lesson summary provides some of the key ideas
  from the lesson.

Lesson Summary

The expected value of a discrete random variable is interpreted as the long-run mean of that random variable.

The interpretation of the expected value should include the context related to the discrete random variable.

Exit Ticket (5 minutes)





engage<sup>ny</sup>

PRECALCULUS AND ADVANCED TOPICS

Name

Date \_\_\_\_\_

# Lesson 8: Interpreting Expected Value

# **Exit Ticket**

At a large university, students are allowed to register for no more than 7 classes. The number of classes for which a student is registered is a discrete random variable. The expected value of this random variable for students at this university is 4.15.

Write an interpretation of this expected value.









#### **Exit Ticket Sample Solutions**

At a large university, students are allowed to register for no more than seven classes. The number of classes for which a student is registered is a discrete random variable. The expected value of this random variable for students at this university is 4. 15.

Write an interpretation of this expected value.

If many students at this university are asked how many classes they are registered for, the average number would be 4.15 classes.

#### **Problem Set Sample Solutions**

| •        |                                                                                                                                                |                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                     |                                                                                             |                                                                                         |                                                                      |                                       |                                         |  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|-----------------------------------------|--|--|--|
|          | Suppo<br>eggs.                                                                                                                                 | se that a discrete random variable<br>Fhe expected value for the numbe<br>t interpretation of this expected va                                                                                                                       | is the number<br>of broken er<br>alue? Explair                                                          | er of brok<br>eggs is 0.4<br>n why the                                                              | en eggs in<br>8 eggs. V<br>others are                                                       | a randon<br>/hich of tl<br>e wrong.                                                     | nly selecte<br>ne followi                                            | d carton on grant of the statem       | of one doz<br>ients is a                |  |  |  |
|          | a.                                                                                                                                             | The probability that an egg will br                                                                                                                                                                                                  | eak in one de                                                                                           | ozen carto                                                                                          | ons is 0.48                                                                                 | 3, on aver                                                                              | age.                                                                 |                                       |                                         |  |  |  |
|          | b.                                                                                                                                             | When a large number of one doze one dozen carton is 0.48 eggs.                                                                                                                                                                       | zen cartons of eggs are examined, the average number of broken eggs in                                  |                                                                                                     |                                                                                             |                                                                                         |                                                                      |                                       |                                         |  |  |  |
|          | c.                                                                                                                                             | c. The mean number of broken eggs in one dozen cartons is 0.48 eggs.                                                                                                                                                                 |                                                                                                         |                                                                                                     |                                                                                             |                                                                                         |                                                                      |                                       |                                         |  |  |  |
|          | The correct answer is b.                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                     |                                                                                             |                                                                                         |                                                                      |                                       |                                         |  |  |  |
|          | Answer choice a relates the expected value to a probability, which is incorrect. The expected value is the long-run mean of a random variable. |                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                     |                                                                                             |                                                                                         |                                                                      |                                       |                                         |  |  |  |
|          | Answer choice c does not refer to the long-run aspect of the expected value.                                                                   |                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                     |                                                                                             |                                                                                         |                                                                      |                                       |                                         |  |  |  |
| 2.       | Due to<br>cannot<br>absent<br>days.                                                                                                            | state funding, attendance is man<br>miss more than eight days of clas<br>is a discrete random variable. Th<br>Write an interpretation of this exp                                                                                    | datory for stu<br>is before beir<br>e expected v<br>pected value.                                       | udents reg<br>ng withdra<br>alue of th                                                              | gistered at<br>awn from<br>is random                                                        | a large co<br>a course.<br>variable f                                                   | ommunity<br>The numl<br>for studer                                   | college.<br>Der of day<br>Its at this | Students<br>s a student<br>college is 3 |  |  |  |
|          | lf man<br>days.                                                                                                                                | y students at this college are aske                                                                                                                                                                                                  | d how many                                                                                              | days they                                                                                           | have bee                                                                                    | n absent,                                                                               | the avera                                                            | ge numbe                              | r would be                              |  |  |  |
|          |                                                                                                                                                |                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                     |                                                                                             |                                                                                         |                                                                      |                                       |                                         |  |  |  |
| <b>.</b> | The stu                                                                                                                                        | Idents at a large high school were                                                                                                                                                                                                   | asked to res                                                                                            | pond anoi                                                                                           | nymously                                                                                    | to the qu                                                                               | estion:                                                              |                                       |                                         |  |  |  |
|          | The st                                                                                                                                         | udents at a large high school were<br>How ma                                                                                                                                                                                         | asked to response                                                                                       | pond anou                                                                                           | nymously                                                                                    | to the que                                                                              | estion:                                                              |                                       |                                         |  |  |  |
|          | The stu<br>The ta                                                                                                                              | udents at a large high school were<br>How ma<br>ple below displays the distributior                                                                                                                                                  | asked to res<br>ny speeding<br>of the numb                                                              | pond ano<br>tickets hav<br>per of spec                                                              | nymously<br>ve you rec<br>eding tick                                                        | to the que<br>eived?<br>ets receive                                                     | estion:<br>ed by stud                                                | lents at th                           | is high sch                             |  |  |  |
|          | The stu<br>The ta                                                                                                                              | udents at a large high school were<br>How ma<br>ble below displays the distributior<br>Number of tickets                                                                                                                             | asked to res<br>ny speeding<br>of the numb                                                              | pond ano<br>tickets hav<br>per of spec<br>1                                                         | nymously<br>ve you rec<br>eding ticko<br>2                                                  | to the que<br>eived?<br>ets receive<br>3                                                | estion:<br>ed by stuc<br>4                                           | lents at th                           | iis high sch                            |  |  |  |
| 3.       | The stu<br>The ta                                                                                                                              | udents at a large high school were<br>How ma<br>ble below displays the distribution<br>Number of tickets<br>Probability                                                                                                              | asked to res<br>ny speeding<br>of the numb<br>0<br>0.55                                                 | pond anoi<br>tickets hav<br>per of spec<br>1<br>0.28                                                | nymously<br>ve you rec<br>eding ticko<br>2<br>0.09                                          | to the que<br>eived?<br>ets receive<br>3<br>0. 04                                       | estion:<br>ed by stuc<br>4<br>0.03                                   | lents at th<br>5<br>0.01              | nis high sch                            |  |  |  |
| 3.       | The stu                                                                                                                                        | udents at a large high school were<br>How ma<br>ble below displays the distribution<br>Number of tickets<br>Probability                                                                                                              | asked to res<br>ny speeding<br>of the numb<br>0<br>0.55                                                 | pond anor<br>tickets har<br>ber of spec<br>1<br>0.28                                                | nymously<br>ve you rec<br>eding ticko<br>2<br>0.09                                          | to the que<br>reived?<br>ets receive<br>3<br>0.04                                       | estion:<br>ed by stuc<br>4<br>0.03                                   | lents at th<br>5<br>0.01              | nis high sch<br>]                       |  |  |  |
| 3.       | The stu<br>The tai                                                                                                                             | udents at a large high school were<br>How ma<br>ble below displays the distribution<br>Number of tickets<br>Probability<br>ite the expected number of speed                                                                          | asked to res<br>ny speeding<br>of the numb<br>0<br>0.55<br>ing tickets re                               | pond anor<br>tickets har<br>ber of spec<br>1<br>0.28<br>ceived. Ir                                  | nymously<br>ve you rec<br>eding ticko<br>2<br>0.09<br>nterpret th                           | to the que<br>reived?<br>ets receive<br>3<br>0.04<br>nis mean i                         | estion:<br>ed by stuc<br>4<br>0.03<br>n context.                     | ents at th<br>5<br>0.01               | nis high sch<br>]                       |  |  |  |
| 3.       | The sta<br>The tal<br>Compu                                                                                                                    | udents at a large high school were<br>How ma<br>ble below displays the distribution<br>Number of tickets<br>Probability<br>Ite the expected number of speed<br>pected number of speeding tickets                                     | asked to res<br>ny speeding<br>of the numb<br>0<br>0.55<br>ing tickets re<br><i>received by</i>         | pond anon<br>tickets have<br>ber of spece<br>1<br>0.28<br>ceived. In<br>students of                 | nymously<br>ve you rec<br>eding ticko<br>2<br>0.09<br>nterpret th<br>at this hig            | to the que<br>reived?<br>ets receive<br>3<br>0.04<br>his mean i<br>h school is          | estion:<br>ed by stuc<br>4<br>0.03<br>n context.<br>s as follow      | ents at th<br>5<br>0.01               | nis high sch<br>]<br>]                  |  |  |  |
| 3.       | The sta<br>The tal<br>Compu<br>The ex<br>0(0.5.                                                                                                | udents at a large high school were<br>How ma<br>ble below displays the distribution<br>Number of tickets<br>Probability<br>the the expected number of speed<br>pected number of speeding tickets<br>5) + 1(0.28) + 2(0.09) + 3(0.00) | asked to res<br>ny speeding<br>of the numb<br>0<br>0.55<br>ing tickets re<br>received by<br>0.04) + 4(0 | pond anor<br>tickets har<br>per of spect<br>1<br>0.28<br>ceived. Ir<br><i>students c</i><br>0.03) + | nymously<br>ve you rec<br>eding ticke<br>2<br>0.09<br>nterpret th<br>at this hig<br>5(0.01) | to the qui<br>eived?<br>ets receive<br>3<br>0.04<br>his mean i<br>h school is<br>= 0.75 | estion:<br>ed by stuc<br>4<br>0.03<br>n context.<br><i>as follow</i> | lents at th<br>5<br>0.01              | nis high sch                            |  |  |  |



Interpreting Expected Value 4/22/15



110

engage<sup>ny</sup>

PRECALCULUS AND ADVANCED TOPICS

Lesson 8

**M5** 





Interpreting Expected Value 4/22/15







This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.</u> 6.

PRECALCULUS AND ADVANCED TOPICS

tires is a discrete random variable. Create two different distributions for this random variable that have the same expected number of damaged tires. What is the expected number of damaged tires for the two distributions? Interpret the expected value. **Distribution 1:** Number of damaged tires 0 2 3 1 4 Probability **Distribution 2:** Number of damaged tires 0 1 2 3 4 Probability Answers will vary. Here is one example. **Distribution 1:** Number of damaged tires 0 1 2 3 4 Probability 0.60 0.20 0.10 0.05 0.05 The expected number of damaged tires is as follows 0(0.60) + 1(0.20) + 2(0.10) + 3(0.05) + 4(0.05) = 0.75 tires **Distribution 2:** 2 3 0 1 4 Number of damaged tires 0.55 0.30 0.05 0.05 0.05 Probability The expected number of damaged tires is as follows 0(0.55) + 1(0.30) + 2(0.05) + 3(0.05) + 4(0.05) = 0.75 tires

At an inspection center in a large city, the tires on the vehicles are checked for damage. The number of damaged

Because this inspection center examines the tires on the vehicles of a large number of customers, the inspectors find an average of 0.75 damaged tires per vehicle.



© 2014 Common Core, Inc. Some rights reserved. commoncore.org



engage<sup>ny</sup>