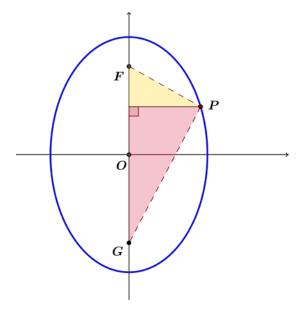
Lesson 7: Curves from Geometry

Classwork

Exercise

Points F and G are located at (0,3) and (0,-3). Let P(x,y) be a point such that PF+PG=8. Use this information to show that the equation of the ellipse is $\frac{x^2}{7}+\frac{y^2}{16}=1$.



Problem Set

- Derive the equation of the ellipse with the given foci F and G that passes through point P. Write your answer in standard form: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
 - The foci are F(-2,0) and G(2,0), and point P(x,y) satisfies the condition PF + PG = 5.
 - The foci are F(-1,0) and G(1,0), and point P(x,y) satisfies the condition PF + PG = 5. b.
 - The foci are F(0,-1) and G(0,1), and point P(x,y) satisfies the condition PF+PG=4.
 - The foci are $F\left(-\frac{2}{3},0\right)$ and $G\left(\frac{2}{3},0\right)$, and point P(x,y) satisfies the condition PF+PG=3.
 - The foci are F(0,-5) and G(0,5), and point P(x,y) satisfies the condition PF+PG=12.
 - The foci are F(-6,0) and G(6,0), and point P(x,y) satisfies the condition PF + PG = 20.
- Recall from Lesson 6 that the semi-major axes of an ellipse are the segments from the center to the farthest vertices, and the semi-minor axes are the segments from the center to the closest vertices. For each of the ellipses in Problem 1, find the lengths a and b of the semi-major axes.
- 3. Summarize what you know about equations of ellipses centered at the origin with vertices (a, 0), (-a, 0), (0, b),and (0, -b).
- 4. Use your answer to Problem 3 to find the equation of the ellipse for each of the situations below.
 - An ellipse centered at the origin with x-intercepts (-2,0), (2,0) and y-intercepts (8,0), (-8,0).
 - An ellipse centered at the origin with x-intercepts $(-\sqrt{5},0)$, $(\sqrt{5},0)$ and y-intercepts (3,0), (-3,0).
- Examine the ellipses and the equations of the ellipses you have worked with, and describe the ellipses with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the three cases a > b, a = b, and b > a.
- Is it possible for $\frac{x^2}{4} + \frac{y^2}{9} = 1$ to have foci at (-c, 0) and (c, 0) for some real number c?
- 7. For each value of k specified in parts (a)–(e), plot the set of points in the plane that satisfy the equation

$$\frac{x^2}{4} + y^2 = k.$$

a.
$$k = 1$$

b.
$$k = \frac{1}{4}$$

c.
$$k = \frac{1}{9}$$

d.
$$k = \frac{1}{16}$$

e.
$$k = \frac{1}{25}$$

f.
$$k = \frac{1}{100}$$

- Make a conjecture: Which points in the plane will satisfy the equation $\frac{x^2}{4} + y^2 = 0$?
- Explain why your conjecture in part (g) makes sense algebraically.
- Which points in the plane will satisfy the equation $\frac{x^2}{4} + y^2 = -1$? i.
- 8. For each value of k specified in parts (a)–(e), plot the set of points in the plane that satisfy the equation

$$\frac{x^2}{k} + y^2 = 1.$$

- a. k = 1
- b. k = 2
- c. k=4
- d. k = 10
- e. k = 25
- Describe what happens to the graph of $\frac{x^2}{k} + y^2 = 1$ as $k \to \infty$.
- 9. For each value of k specified in parts (a)–(e), plot the set of points in the plane that satisfy the equation

$$x^2 + \frac{y^2}{k} = 1.$$

- a. k = 1
- b. k=2
- c. k=4
- d. k = 10
- e. k = 25
- Describe what happens to the graph of $x^2 + \frac{y^2}{k} = 1$ as $k \to \infty$.