Topic E:

Cyclic Quadrilaterals and Ptolemy's Theorem

```
G-C.A. 3
```

Focus Standard:	G-C.A.3	Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Instructional Days:	2	
Lesson 20:	Cyclic Quadrilaterals (P) ${ }^{1}$	
Lesson 21:	Ptolemy's Theorem (E)	

Topic E is a two lesson topic recalling several concepts from the year, e.g., Pythagorean theorem, similarity, and trigonometry, as well as concepts from Module 5 related to arcs and angles. In Lesson 20, students are introduced to the term cyclic quadrilaterals and define the term informally as a quadrilateral whose vertices lie on a circle. Students then prove that a quadrilateral is cyclic if and only if the opposite angles of the quadrilateral are supplementary. They use this reasoning and the properties of quadrilaterals inscribed in circles (G-C.A.3) to develop the area formula for a cyclic quadrilateral in terms of side length. Lesson 21 continues the study of cyclic quadrilaterals as students prove Ptolemy's theorem and understand that the area of a cyclic quadrilateral is a function of its side lengths and an acute angle formed by its diagonals (GSRT.D.9). Students must identify features within complex diagrams to inform their thinking, highlighting MP.7. For example, students use the structure of an inscribed triangle in a half-plane separated by the diagonal of a cyclic quadrilateral to conclude that a reflection of the triangle along the diagonal produces a different cyclic quadrilateral with an area equal to the original cyclic quadrilateral. Students use this reasoning to make sense of Ptolemy's theorem and its origin.

[^0]
[^0]: ${ }^{1}$ Lesson Structure Key: P-Problem Set Lesson, M-Modeling Cycle Lesson, E-Exploration Lesson, S-Socratic Lesson

