GEOMETRY

Lesson 19: Equations for Tangent Lines to Circles

Classwork

Opening Exercise

A circle of radius 5 passes through points A(-3,3) and B(3,1).

- a. What is the special name for segment AB?
- b. How many circles can be drawn that meet the given criteria? Explain how you know.
- c. What is the slope of \overline{AB} ?
- d. Find the midpoint of \overline{AB} .
- e. Find the equations of the line containing a diameter of the given circle perpendicular to \overline{AB} .
- f. Is there more than one answer possible for part (e)?

Lesson 19: Date: Equations for Tangent Lines to Circles 10/22/14

GEOMETRY

Example 1

Consider the circle with equation $(x-3)^2+(y-5)^2=20$. Find the equations of two tangent lines to the circle that each have slope $-\frac{1}{2}$.

GEOMETRY

Exercise 1

Consider the circle with equation $(x-4)^2 + (y-5)^2 = 20$. Find the equations of two tangent lines to the circle that each have slope 2.

Example 2

Refer to the diagram below.

Let p > 1. What is the equation of the tangent line to the circle $x^2 + y^2 = 1$ through the point (p, 0) on the x-axis with a point of tangency in the upper halfplane?

Exercises

- 2. Use the same diagram from Example 2 above, but label the point of tangency in the lower half-plane as Q'.
 - a. What are the coordinates of Q'?
 - b. What is the slope of $\overline{OQ'}$?
 - c. What is the slope of $\overline{Q'P}$?
 - d. Find the equation of the second tangent line to the circle through (p, 0).

3. Show that a circle with equation $(x-2)^2+(y+3)^2=160$ has two tangent lines with equations $y+15=\frac{1}{3}(x-6)$ and $y-9=\frac{1}{3}(x+2)$.

4. Could a circle given by the equation $(x-5)^2+(y-1)^2=25$ have tangent lines given by the equations $y-4=\frac{4}{3}(x-1)$ and $y-5=\frac{3}{4}(x-8)$? Explain how you know.

Lesson 19: Date: Equations for Tangent Lines to Circles 10/22/14

CEOMETRY

Lesson Summary

Theorems

A tangent line to a circle is perpendicular to the radius of the circle drawn to the point of tangency.

Relevant Vocabulary

TANGENT TO A CIRCLE. A *tangent line to a circle* is a line in the same plane that intersects the circle in one and only one point. This point is called the *point of tangency*.

Problem Set

- 1. Consider the circle $(x-1)^2 + (y-2)^2 = 16$. There are two lines tangent to this circle having a slope of 0.
 - a. Find the coordinates of the points of tangency.
 - b. Find the equations of the two tangent lines.
- 2. Consider the circle $x^2 4x + y^2 + 10y + 13 = 0$. There are two lines tangent to this circle having a slope of $\frac{2}{3}$.
 - a. Find the coordinates of the two points of tangency.
 - b. Find the equations of the two tangent lines.
- 3. What are the coordinates of the points of tangency of the two tangent lines through the point (1,1) each tangent to the circle $x^2 + y^2 = 1$?
- 4. What are the coordinates of the points of tangency of the two tangent lines through the point (-1, -1) each tangent to the circle $x^2 + y^2 = 1$?
- 5. What is the equation of the tangent line to the circle $x^2 + y^2 = 1$ through the point (6,0)?
- 6. D'Andre said that a circle with equation $(x-2)^2+(y-7)^2=13$ has a tangent line represented by the equation $y-5=-\frac{3}{2}(x+1)$. Is he correct? Explain.

(cg) BY-NC-SA

7. Kamal gives the following proof that $y-1=\frac{8}{9}(x+10)$ is the equation of a line that is tangent to a circle given by $(x+1)^2 + (y-9)^2 = 145.$

The circle has center (-1,9) and radius 12. The point (-10,1) is on the circle because

$$(-10+1)^2 + (1-9)^2 = (-9)^2 + (-8)^2 = 145.$$

The slope of the radius is $\frac{9-1}{-1-10} = \frac{8}{9}$; therefore, the equation of the tangent line is $y-1=\frac{8}{9}(x+10)$.

- Kerry said that Kamal has made an error. What was Kamal's error? Explain what he did wrong.
- What should the equation for the tangent line be?
- Describe a similarity transformation that maps a circle given by $x^2 + 6x + y^2 2y = 71$ to a circle of radius 3 that is tangent to both axes in the first quadrant.