Lesson 6: Linear Transformations as Matrices

Classwork

Opening Exercise

Let $A=\left(\begin{array}{ll}7 & -2 \\ 5 & -3\end{array}\right), x=\binom{x_{1}}{x_{2}}$, and $y=\binom{y_{1}}{y_{2}}$. Does this represent a linear transformation? Explain how you know.

Exploratory Challenge 1: The Geometry of 3D Matrix Transformations

a. What matrix in \mathbb{R}^{2} serves the role of 1 in the real number system? What is that role?
b. What matrix in \mathbb{R}^{2} serves the role of 0 in the real number system? What is that role?
c. What is the result of scalar multiplication in \mathbb{R}^{2} ?
d. Given a complex number $a+b i$, what represents the transformation of that point across the real axis?

Exploratory Challenge 2: Properties of Vector Arithmetic
a. Is vector addition commutative? That is, does $x+y=y+x$ for each pair of points in \mathbb{R}^{2} ? What about points in \mathbb{R}^{3} ?
b. Is vector addition associative? That is, does $(x+y)+r=x+(y+r)$ for any three points in \mathbb{R}^{2} ? What about points in \mathbb{R}^{3} ?
c. Does the distributive property apply to vector arithmetic? That is, does $k \cdot(x+y)=k x+k y$ for each pair of points in \mathbb{R}^{2} ? What about points in \mathbb{R}^{3} ?
d. Is there an identity element for vector addition? That is, can you find a point a in \mathbb{R}^{2} such that $x+a=x$ for every point x in \mathbb{R}^{2} ? What about for \mathbb{R}^{3} ?
e. Does each element in \mathbb{R}^{2} have an additive inverse? That is, if you take a point a in \mathbb{R}^{2}, can you find a second point b such that $a+b=0$?

Problem Set

1. Show that the associative property, $x+(y+z)=(x+y)+z$, holds for the following.
a. $x=\binom{3}{-2}, y=\binom{-4}{2}, z=\binom{-1}{5}$
b. $x=\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right), y=\left(\begin{array}{c}0 \\ 5 \\ -2\end{array}\right), z=\left(\begin{array}{c}3 \\ 0 \\ -3\end{array}\right)$
2. Show that the distributive property, $k(x+y)=k x+k y$, holds for the following.
a. $x=\binom{5}{-3}, y=\binom{-2}{4}, k=-2$
b. $x=\left(\begin{array}{c}3 \\ -2 \\ 5\end{array}\right), y=\left(\begin{array}{c}-4 \\ 6 \\ -7\end{array}\right), k=-3$
3. Compute the following.
a. $\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 2 & 3\end{array}\right)\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$
b. $\quad\left(\begin{array}{ccc}-1 & 2 & 3 \\ 3 & 1 & -2 \\ 1 & -2 & 3\end{array}\right)\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$
c. $\quad\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 3\end{array}\right)\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)$
4. Let $x=\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$. Compute $L(x)=\left[\begin{array}{lll}a & d & g \\ b & e & h \\ c & f & i\end{array}\right] \cdot x$, plot the points, and describe the geometric effect to x.
a. $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
b. $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
c. $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
d. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
5. Let $x=\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$. Compute $L(x)=\left[\begin{array}{lll}a & d & g \\ b & e & h \\ c & f & i\end{array}\right] \cdot x$. Describe the geometric effect to x.
a. $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
b. $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]$
c. $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$
d. $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
e. $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
f. $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$
g. $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
h. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
i. $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
6. Find the matrix that will transform the point $x=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$ to the following point:
a. $\quad\left(\begin{array}{c}-4 \\ -12 \\ -8\end{array}\right)$
b. $\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$
7. Find the matrix/matrices that will transform the point $\mathbf{x}=\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$ to the following point:
a. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{l}6 \\ 4 \\ 2\end{array}\right)$
b. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{c}-1 \\ 3 \\ 2\end{array}\right)$
