Lesson 6: Linear Transformations as Matrices

Classwork

Opening Exercise

Let $A = \begin{pmatrix} 7 & -2 \\ 5 & -3 \end{pmatrix}$, $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, and $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$. Does this represent a linear transformation? Explain how you know.

Exploratory Challenge 1: The Geometry of 3D Matrix Transformations

a. What matrix in \mathbb{R}^2 serves the role of 1 in the real number system? What is that role?

b. What matrix in \mathbb{R}^2 serves the role of 0 in the real number system? What is that role?

c. What is the result of scalar multiplication in \mathbb{R}^2 ?

d. Given a complex number a + bi, what represents the transformation of that point across the real axis?

Lesson 6

PRECALCULUS AND ADVANCED TOPICS

Exploratory Challenge 2: Properties of Vector Arithmetic

a. Is vector addition commutative? That is, does x + y = y + x for each pair of points in \mathbb{R}^2 ? What about points in \mathbb{R}^3 ?

b. Is vector addition associative? That is, does (x + y) + r = x + (y + r) for any three points in \mathbb{R}^2 ? What about points in \mathbb{R}^3 ?

c. Does the distributive property apply to vector arithmetic? That is, does $k \cdot (x + y) = kx + ky$ for each pair of points in \mathbb{R}^2 ? What about points in \mathbb{R}^3 ?

d. Is there an identity element for vector addition? That is, can you find a point a in \mathbb{R}^2 such that x + a = x for every point x in \mathbb{R}^2 ? What about for \mathbb{R}^3 ?

Lesson 6: Date: Linear Transformations as Matrices 1/30/15

Does each element in \mathbb{R}^2 have an additive inverse? That is, if you take a point a in \mathbb{R}^2 , can you find a second point b such that a + b = 0?

Problem Set

1. Show that the associative property, x + (y + z) = (x + y) + z, holds for the following.

a.
$$x = \begin{pmatrix} 3 \\ -2 \end{pmatrix}, y = \begin{pmatrix} -4 \\ 2 \end{pmatrix}, z = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$

b.
$$x = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}, y = \begin{pmatrix} 0 \\ 5 \\ -2 \end{pmatrix}, z = \begin{pmatrix} 3 \\ 0 \\ -3 \end{pmatrix}$$

2. Show that the distributive property, k(x + y) = kx + ky, holds for the following.

a.
$$x = {5 \choose -3}, y = {-2 \choose 4}, k = -2$$

b.
$$x = \begin{pmatrix} 3 \\ -2 \\ 5 \end{pmatrix}, y = \begin{pmatrix} -4 \\ 6 \\ -7 \end{pmatrix}, k = -3$$

3. Compute the following.

a.
$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$

b.
$$\begin{pmatrix} -1 & 2 & 3 \\ 3 & 1 & -2 \\ 1 & -2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

c.
$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$

4. Let $x = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$. Compute $L(x) = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix} \cdot x$, plot the points, and describe the geometric effect to x.

a.
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

b.
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

c.
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- 5. Let $x = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$. Compute $L(x) = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix} \cdot x$. Describe the geometric effect to x.
 - a. $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 - b. $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
 - c. $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
 - d. $\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 - e. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 - f. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
 - g. $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 - $\text{h.} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$
 - i. $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
- 6. Find the matrix that will transform the point $x = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$ to the following point:
 - a. $\begin{pmatrix} -4 \\ -12 \\ -8 \end{pmatrix}$
 - b. $\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$
- 7. Find the matrix/matrices that will transform the point $\mathbf{x} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ to the following point:
 - a. $\mathbf{x}' = \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix}$

b. $\mathbf{x}' = \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$