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Lesson 4:  Linear Transformations Review 

 
Student Outcome 

 Students will review their understanding of linear transformations on real and complex numbers as well as 
linear transformations in two-dimensional space.  They will use their understanding to form conjectures about 
linear transformations in three-dimensional space. 

 

Lesson Notes 
In this lesson, students will respond to questions to demonstrate what they understand about linear transformations 
performed on real and complex numbers, as well as those performed in two-dimensional space and three-dimensional 
space.  They will describe special cases of linear transformations for real and complex numbers.  They will also verify the 
conditions for linear transformations in two-dimensional space and make conjectures about how to define and represent 
linear transformations in three-dimensional space. 

 

Classwork 

Discussion (5 minutes):  Linear Transformations ℝ → ℝ  

During this discussion, call on a variety of students to answer the questions as they are posed. 

 Recall that when we write 𝐿𝐿:ℝ → ℝ, we mean that 𝐿𝐿 is a function that takes real numbers as inputs and 
produces real numbers as outputs. 

 Let’s recall the conditions a function 𝐿𝐿:ℝ → ℝ must meet to be a called a linear 
transformation.  What are they? 

 First, we need 𝐿𝐿(𝑥𝑥 + 𝑦𝑦) = 𝐿𝐿(𝑥𝑥) + 𝐿𝐿(𝑦𝑦). 
 Second, we need 𝐿𝐿(𝑎𝑎 ∙ 𝑥𝑥) = 𝑎𝑎 ∙ 𝐿𝐿(𝑥𝑥). 

 Good.  And what exactly are 𝑎𝑎, 𝑥𝑥, and 𝑦𝑦 in this case? 

 Each of these symbols represents a real number. 
 Okay.  Now give three examples of formulas that you know represent linear 

transformations from ℝ to ℝ. 
 𝐿𝐿(𝑥𝑥) = 2 ∙ 𝑥𝑥 
 𝐿𝐿(𝑥𝑥) = 3 ∙ 𝑥𝑥 
 𝐿𝐿(𝑥𝑥) = 4 ∙ 𝑥𝑥 

 Good.  So we see that a linear transformation 𝐿𝐿:ℝ → ℝ must have the form 
𝐿𝐿(𝑥𝑥) = 𝑎𝑎 ∙ 𝑥𝑥 for some real number 𝑎𝑎.  Now let’s explore the geometric effect 
that linear transformations have on the real number line.  The value of 𝑎𝑎 could 
be positive, negative, or zero, and the size of 𝑎𝑎 could be big or small.  How are 
these cases different geometrically?  Let’s explore together. 

  

 

𝑓𝑓(𝑥𝑥) = 2𝑥𝑥 
𝑔𝑔(𝑥𝑥) = 2𝑥𝑥 + 1 

ℎ(𝑥𝑥) =  
1
2 𝑥𝑥 

𝑗𝑗(𝑥𝑥) =  
1
2
𝑥𝑥 − 1 

Scaffolding: 
 Show the following 

examples: 

Which are linear 
transformations?  Explain 
your answer. 

 Advanced students can be 
challenged to explore the 
questions about the 
geometric implications of 
different values of 𝑎𝑎 
without any additional 
cueing. 
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 Consider the interval [−2, 2].  What is the image of the interval under the rule 𝐿𝐿(𝑥𝑥) = 3 ∙ 𝑥𝑥? 

 We have 𝐿𝐿(−2) = 3 ∙ −2 = −6, and 𝐿𝐿(2) = 3 ∙ 2 = 6.  It looks as though the image of [−2, 2]  
is [−6, 6]. 

 When we use a scale factor of 3, the interval expands to 3 times its original size.  Now let’s try a role reversal:  
can you think of a mapping would take the interval at the bottom of the figure and map it to the one at the 
top?  Explain your answer. 

 The inverse map is 𝐿𝐿(𝑥𝑥) = �1
3� ∙ 𝑥𝑥.  This makes sense because we are contracting the interval so that it 

ends up being 
1
3

 of its original size. 

 In some cases, the transformation 𝐿𝐿(𝑥𝑥) = 𝑎𝑎 ∙ 𝑥𝑥 expands an interval, and in other cases it contracts the interval.  
Can you think of a mapping that leaves the size of the interval unchanged? 

 𝐿𝐿(𝑥𝑥) = 1 ∙ 𝑥𝑥 does not change the size of the interval. 
 Can you see why mathematicians refer to 𝐿𝐿(𝑥𝑥) = 1 ∙ 𝑥𝑥 as the identity mapping?  Try to make sense of this 

phrase. 

 Under the identity mapping, each point on the number line is mapped to a location that is identical to 
its original location. 

 Now let’s consider some cases where 𝑎𝑎 is a negative number.  What is the image of [−2, 2] under the rule 
𝐿𝐿(𝑥𝑥) = −1 ∙ 𝑥𝑥? 

 In this case, each point on the number line is reflected across the origin.  The result is the same interval 
we started with, but each point has been taken to the opposite side of the number 0. 

 Describe what happens after the application of 𝐿𝐿(𝑥𝑥) = −2 ∙ 𝑥𝑥 or 𝐿𝐿(𝑥𝑥) = �− 1
2� ∙ 𝑥𝑥.  

 First, each interval gets reflected across the origin, and then a dilation gets applied.  In the first case, 
each interval dilates to twice its original size, and in the second case, each interval dilates to half its 
original size. 

 Now let’s consider the only remaining case.  What happens when we apply the zero map, 𝐿𝐿(𝑥𝑥) = 0 ∙ 𝑥𝑥? 

 Since 𝐿𝐿(𝑥𝑥) = 0 ∙ 𝑥𝑥 = 0 for every real number 𝑥𝑥, the entire number line gets mapped to a single point, 
namely 0! 
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 Perhaps we should call this kind of transformation a collapse, since what used to be a line has now collapsed 
to a single point. 

 Write a quick summary of this discussion in your notebook, and then share what 
you wrote with a partner. 

 Every linear transformation 𝐿𝐿:ℝ → ℝ has the form 𝐿𝐿(𝑥𝑥) = 𝑎𝑎 ∙ 𝑥𝑥 for some 
real number 𝑎𝑎.  Each of these transformations is essentially a dilation 
with scale factor 𝑎𝑎.  Special cases include 𝑎𝑎 = 0, which causes the whole 
number line to collapse to the origin; 𝑎𝑎 = 1, which leaves the whole 
number line unchanged; and 𝑎𝑎 = −1, which causes each point on the 
number line to undergo a reflection through the origin. 

 

Exercises 1–2 (3 minutes)  

The students should complete the exercises in pairs.  One pair should be asked to share each solution.  The presenting 
pair could represent the mapping geometrically on the board to aid students who are strong visual learners.  

 
Exercises 1–2 

1. Describe the geometric effect of each mapping.  

a. 𝑳𝑳(𝒙𝒙) = 𝟗𝟗 ∙ 𝒙𝒙 

Dilates the interval by a factor of 𝟗𝟗 

 

b. 𝑳𝑳(𝒙𝒙) = −𝟏𝟏
𝟐𝟐 ∙ 𝒙𝒙 

Reflects the interval over the origin and then applies a dilation with a scale factor of 
𝟏𝟏
𝟐𝟐

 

 

2. Write the formula for the mappings described. 

a. A dilation that expands each interval to 𝟓𝟓 times its original size. 

𝑳𝑳(𝒙𝒙) = 𝟓𝟓 ∙ 𝒙𝒙 

 

b. A collapse of the interval to the number 𝟎𝟎.  

𝑳𝑳(𝒙𝒙) = 𝟎𝟎 ∙ 𝒙𝒙 

 

Discussion (10 minutes):  Linear Transformations ℂ → ℂ 

 In addition to transformations from ℝ to ℝ, in the previous module we also studied transformations that take 
complex numbers as inputs and produce complex numbers as outputs, and we used the symbol 𝐿𝐿: ℂ → ℂ to 
denote this. 

 As we did for functions from ℝ to ℝ, let’s recall the conditions a function 𝐿𝐿:ℂ → ℂ must meet to be a called a 
linear transformation.  What are they? 

 Just as before, we need 𝐿𝐿(𝑥𝑥 + 𝑦𝑦) = 𝐿𝐿(𝑥𝑥) + 𝐿𝐿(𝑦𝑦) and 𝐿𝐿(𝑎𝑎 ∙ 𝑥𝑥) = 𝑎𝑎 ∙ 𝐿𝐿(𝑥𝑥). 
 What exactly do 𝑎𝑎, 𝑥𝑥, and 𝑦𝑦 represent in this case? 

 Each of these symbols represents a complex number.  

Scaffolding: 
Provide a specific interval that 
students can use when solving 
Exercise 1 (e.g., have students 
explain the effect of the 
transformations on the interval 
[−1,1]). 

Scaffolding: 
Students could create a graphic 
organizer listing the matrix in 
one column and 
transformation represented in 
the next column. 

MP.2 
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 Give three examples of formulas that you know represent linear transformations from ℂ to ℂ. 
 𝐿𝐿(𝑥𝑥) = 2 ∙ 𝑥𝑥 
 𝐿𝐿(𝑥𝑥) = 𝑖𝑖 ∙ 𝑥𝑥 
 𝐿𝐿(𝑥𝑥) = (3 + 5𝑖𝑖) ∙ 𝑥𝑥 

 So we see that a linear transformation 𝐿𝐿:ℂ → ℂ must have the form 𝐿𝐿(𝑥𝑥) = 𝑎𝑎 ∙ 𝑥𝑥 for some complex number 𝑎𝑎.  
As we did above with functions from ℝ to ℝ, let’s explore the geometric effect of some special linear 
transformations from ℂ to ℂ. 

 What do you remember about the result of multiplying 𝑎𝑎 + 𝑏𝑏𝑖𝑖 by 𝑐𝑐 + 𝑑𝑑𝑖𝑖? 

 We know that (𝑎𝑎 + 𝑏𝑏𝑖𝑖) ∙ (𝑐𝑐 + 𝑑𝑑𝑖𝑖) = 𝑎𝑎𝑐𝑐 − 𝑏𝑏𝑑𝑑 + (𝑎𝑎𝑑𝑑 + 𝑏𝑏𝑐𝑐) ∙ 𝑖𝑖. 
 Recall that we visualize complex numbers as points in the complex plane.  What do you remember about the 

geometric effect of multiplying one complex number by another? 

 Multiplication by a complex number induces a rotation and a dilation. 

 Now let’s get back to the subject of linear transformations.  Discuss the following questions with another 
student.  Analyze each question both algebraically and geometrically.  Be prepared to share your analysis with 
the whole class in a few minutes. 

 Is there a linear transformation 𝐿𝐿:ℂ → ℂ that leaves each point in the complex plane unchanged?  That is, is 
there an identity map from ℂ → ℂ? 

 Yes.  If we take 𝑎𝑎 = 1 + 0𝑖𝑖 and 𝑥𝑥 = 𝑐𝑐 + 𝑑𝑑𝑖𝑖, we get this: 

 𝐿𝐿(𝑥𝑥) = 𝑎𝑎𝑥𝑥 = (1 + 0𝑖𝑖)(𝑐𝑐 + 𝑑𝑑𝑖𝑖) = 1 ∙ 𝑐𝑐 − 0 ∙ 𝑑𝑑 + (1 ∙ 𝑑𝑑 + 0 ∙ 𝑐𝑐)𝑖𝑖 = 𝑐𝑐 + 𝑑𝑑𝑖𝑖 = 𝑥𝑥. 

 Geometrically, multiplying by the complex number 1 + 0𝑖𝑖 is the same thing as multiplying by the real 
number 1, so it makes sense that this action leaves points unchanged. 

 Describe the set of linear transformations 𝐿𝐿:ℂ → ℂ that induce a pure rotation of points in the complex plane. 

 We know that multiplication by a complex number 𝑎𝑎 induces a rotation through the argument of 𝑎𝑎, as 
well as a dilation by the modulus of 𝑎𝑎.  So if we want a pure rotation, then we need to have |𝑎𝑎| = 1.  
Thus, if 𝑎𝑎 is any point on the unit circle surrounding the origin, then 𝐿𝐿(𝑥𝑥) = 𝑎𝑎𝑥𝑥 will induce a pure 
rotation of the complex plane. 

  

 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
 
 
 

    

 

 

NYS COMMON CORE MATHEMATICS CURRICULUM M2 Lesson 4 
PRECALCULUS AND ADVANCED TOPICS 

Lesson 4: Linear Transformations Review 
Date: 1/30/15 
 

70 

© 2015 Common Core, Inc. Some rights reserved. commoncore.org This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

 Describe the set of linear transformations 𝐿𝐿:ℂ → ℂ that induce a pure dilation of points in the complex plane. 

 If 𝐿𝐿(𝑥𝑥) = 𝑎𝑎𝑥𝑥 induces a pure dilation, then the argument of 𝑎𝑎 must be 0.  This means that 𝑎𝑎 is, in fact, a 
real number. 

 Is there a linear transformation 𝐿𝐿:ℂ → ℂ that collapses the entire complex plane into a single point? 

 Yes.  If we choose 𝑎𝑎 = 0 + 0𝑖𝑖, then we get 𝐿𝐿(𝑥𝑥) = 𝑎𝑎𝑥𝑥 = (0 + 0𝑖𝑖)𝑥𝑥 = 0 + 0𝑖𝑖 for every 𝑥𝑥.  Thus, every 
point in the complex plane gets mapped to the origin. 
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 Is there a linear transformation 𝐿𝐿:ℂ → ℂ that induces a reflection across the real axis?  In particular, where 
would such a transformation take 5 + 2𝑖𝑖?  Where would it take 1 + 0𝑖𝑖?  Where would it take 0 + 1𝑖𝑖? 

 Since (5,2) maps to (5,−2), the image of 5 + 2𝑖𝑖 must be 5 − 2𝑖𝑖. 
 Since (1,0) maps to (1,0), the image of 1 + 0𝑖𝑖 must be 1 + 0𝑖𝑖. 
 Since (0,1) maps to (0,−1), the image of 0 + 1𝑖𝑖 must be 0 − 1𝑖𝑖. 

 If there is a complex number 𝑎𝑎 such that 𝐿𝐿(𝑥𝑥) = 𝑎𝑎𝑥𝑥 induces a reflection across the real axis, then what would 
its argument have to be?  Analyze your work above carefully. 

 Since points on the real axis map to themselves, it would appear that the argument of 𝑎𝑎 would have to 
be 0.  In other words, there must be no rotational component. 

 On the other hand, points on the imaginary axis get rotated through 180°.  But this is irreconcilable 
with the statement above.  Thus, it appears that there is no complex number 𝑎𝑎 that meets the 
necessary requirements, so we conclude that reflection across the real axis is not a linear 
transformation from ℂ to ℂ. 

 

Discussion (7 minutes):  Linear Transformations ℝ𝟐𝟐 → ℝ𝟐𝟐 

 Recall that we can visualize complex numbers as points in the complex plane.  Let’s briefly review some 
arithmetic with complex numbers. 

 Let 𝑧𝑧1 = 3 + 4𝑖𝑖, and let 𝑧𝑧2 = 5 − 2𝑖𝑖.  What is 𝑧𝑧1 + 𝑧𝑧2? 
 𝑧𝑧1 + 𝑧𝑧2 = (3 + 5) + (4 − 2)𝑖𝑖 = 8 + 2𝑖𝑖 

 Thinking of these two complex numbers as points in the coordinate plane, we can write 𝑧𝑧1 = �3
4� and  

𝑧𝑧2 = � 5
−2�.  Thus, we could just as well write 𝑧𝑧1 + 𝑧𝑧2 = �3

4� + � 5
−2� = �8

2�.  In fact, we can even abandon the  
 

context of complex numbers and let addition of ordered pairs take on a life of its own. 

 With this in mind, what is � 9
−1� + �3

6�? 

 � 9
−1� + �3

6� = � 9 + 3
−1 + 6� = �12

5 � 

 Now let’s review scalar multiplication.  With 𝑧𝑧 = 3 + 5𝑖𝑖, what is 10𝑧𝑧? 
 10𝑧𝑧 = 10(3 + 5𝑖𝑖) = 30 + 50𝑖𝑖 
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 Thinking of 𝑧𝑧 as a point in the coordinate plane, we have 𝑧𝑧 = �3
5�, and 10𝑧𝑧 = 10 �3

5� = �30
50�.  Once again we 

 

can set complex numbers to the side and let scalar multiplication of ordered pairs be an operation in its own 
right. 

 With this in mind, what is 5 � 4
−2�? 

 5 � 4
−2� = � 5 ∙ 4

5 ∙ −2� = � 20
−10� 

 We saw in Module 1 that multiplication by a complex number is a linear transformation that can be modeled  
 

using matrices.  For instance, to model the product (3 + 4𝑖𝑖) ∙ (𝑥𝑥 + 𝑦𝑦𝑖𝑖), we can write 𝐿𝐿 �
𝑥𝑥
𝑦𝑦� = �3 −4

4 3 � �
𝑥𝑥
𝑦𝑦�.  

Describe the geometric effect of this transformation on points in the plane. 

 Each point �
𝑥𝑥
𝑦𝑦� is dilated by a factor of √32 + 42 = 5 and rotated through an angle that is given by 

arctan 4
3. 

 When a matrix is used to model complex-number multiplication, it will always have the form �𝑎𝑎 −𝑏𝑏
𝑏𝑏 𝑎𝑎 �, and we  

 

already know that these matrices represent linear transformations.  Now let’s consider a more general matrix  
 

transformation 𝐴𝐴 �
𝑥𝑥
𝑦𝑦� = �−3 2

1 4� �
𝑥𝑥
𝑦𝑦�.  Does this also represent a linear transformation?  Let’s begin by  

 

checking the addition requirement. 

 𝐴𝐴��
𝑥𝑥1
𝑦𝑦1� + �

𝑥𝑥2
𝑦𝑦2�� = 𝐴𝐴 �

𝑥𝑥1 + 𝑥𝑥2
𝑦𝑦1 + 𝑦𝑦2

� = �−3 2
1 4� �

𝑥𝑥1 + 𝑥𝑥2
𝑦𝑦1 + 𝑦𝑦2

� = �−3(𝑥𝑥1 + 𝑥𝑥2) + 2(𝑦𝑦1 + 𝑦𝑦2)
(𝑥𝑥1 + 𝑥𝑥2) + 4(𝑦𝑦1 + 𝑦𝑦2) � 

 𝐴𝐴��
𝑥𝑥1
𝑦𝑦1� + �

𝑥𝑥2
𝑦𝑦2�� = �−3𝑥𝑥1 − 3𝑥𝑥2 + 2𝑦𝑦1 + 2𝑦𝑦2

𝑥𝑥1 + 𝑥𝑥2 + 4𝑦𝑦1 + 4𝑦𝑦2
� 

 𝐴𝐴 �
𝑥𝑥1
𝑦𝑦1� = �−3 2

1 4� �
𝑥𝑥1
𝑦𝑦1� = �−3𝑥𝑥1 + 2𝑦𝑦1

𝑥𝑥1 + 4𝑦𝑦1
� 

 𝐴𝐴 �
𝑥𝑥2
𝑦𝑦2� = �−3 2

1 4� �
𝑥𝑥2
𝑦𝑦2� = �−3𝑥𝑥2 + 2𝑦𝑦2

𝑥𝑥2 + 4𝑦𝑦2
� 

 𝐴𝐴 �
𝑥𝑥1
𝑦𝑦1� + 𝐴𝐴 �

𝑥𝑥2
𝑦𝑦2� = �−3𝑥𝑥1 + 2𝑦𝑦1

𝑥𝑥1 + 4𝑦𝑦1
� + �−3𝑥𝑥2 + 2𝑦𝑦2

𝑥𝑥2 + 4𝑦𝑦2
� = �−3𝑥𝑥1 + 2𝑦𝑦1 − 3𝑥𝑥2 + 2𝑦𝑦2

𝑥𝑥1 + 4𝑦𝑦1 + 𝑥𝑥2 + 4𝑦𝑦2
� 

 When we compare 𝐴𝐴��
𝑥𝑥1
𝑦𝑦1� + �

𝑥𝑥2
𝑦𝑦2�� with 𝐴𝐴 �

𝑥𝑥1
𝑦𝑦1� + 𝐴𝐴 �

𝑥𝑥2
𝑦𝑦2�, we see that the results are the same. 

 Now let’s check the scalar multiplication requirement. 

 𝐴𝐴�𝑘𝑘 �
𝑥𝑥
𝑦𝑦�� = 𝐴𝐴 �𝑘𝑘𝑥𝑥𝑘𝑘𝑦𝑦� = �−3 2

1 4� �
𝑘𝑘𝑥𝑥
𝑘𝑘𝑦𝑦� = �−3 ∙ 𝑘𝑘𝑥𝑥 + 2 ∙ 𝑘𝑘𝑦𝑦

1 ∙ 𝑘𝑘𝑥𝑥 + 4 ∙ 𝑘𝑘𝑦𝑦 � 

 𝑘𝑘 ∙ 𝐴𝐴 �
𝑥𝑥
𝑦𝑦� = 𝑘𝑘 ∙ �−3 2

1 4� �
𝑥𝑥
𝑦𝑦� = 𝑘𝑘 ∙ �−3 ∙ 𝑥𝑥 + 2 ∙ 𝑦𝑦

1 ∙ 𝑥𝑥 + 4 ∙ 𝑦𝑦 � = �−3 ∙ 𝑘𝑘𝑥𝑥 + 2 ∙ 𝑘𝑘𝑦𝑦
1 ∙ 𝑘𝑘𝑥𝑥 + 4 ∙ 𝑘𝑘𝑦𝑦 � 

 When we compare 𝐴𝐴�𝑘𝑘 �
𝑥𝑥
𝑦𝑦�� with 𝑘𝑘 ∙ 𝐴𝐴 �

𝑥𝑥
𝑦𝑦�, we see that they are the same. 
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 So we see that the matrix mapping 𝐴𝐴 �
𝑥𝑥
𝑦𝑦� = �−3 2

1 4� �
𝑥𝑥
𝑦𝑦� is indeed a linear transformation.  In fact, we could  

 

use the same technique to prove in general that 𝐴𝐴 �
𝑥𝑥
𝑦𝑦� = �𝑎𝑎 𝑐𝑐

𝑏𝑏 𝑑𝑑� �
𝑥𝑥
𝑦𝑦� is a linear transformation also. 

 So if 𝑥𝑥 = �
𝑥𝑥1
𝑥𝑥2� and 𝑦𝑦 = �

𝑦𝑦1
𝑦𝑦2�, then we can summarize the linearity requirements as follows: 

1. 𝐴𝐴(𝑥𝑥 + 𝑦𝑦) = 𝐴𝐴𝑥𝑥 + 𝐴𝐴𝑦𝑦  
2. 𝑨𝑨(𝒌𝒌 ∙ 𝒙𝒙) = 𝒌𝒌 ∙ 𝑨𝑨𝒙𝒙 

 This is much cleaner and easier to handle! 

 Suppose that the determinant of �𝑎𝑎 𝑐𝑐
𝑏𝑏 𝑑𝑑� is zero.  What can we say about the mapping �

𝑥𝑥
𝑦𝑦� ⟼ �𝑎𝑎 𝑐𝑐

𝑏𝑏 𝑑𝑑� �
𝑥𝑥
𝑦𝑦� in 

this case? 

 In Module 1, we learned that the determinant of a matrix represents the area of the image of the unit 
square.  If this area is 0, then the transformation represents a collapse of some kind.  This implies that 
the transformation is not invertible. 

 

Discussion (5 minutes):  Linear Transformations ℝ𝟑𝟑 → ℝ𝟑𝟑 

 We saw that points in ℝ2 can be represented as ordered pairs �
𝑥𝑥1
𝑥𝑥2�.  How do you suppose we might represent 

points in three-dimensional space? 

 Points in ℝ3 can be represented as ordered triples �
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
�. 

 How would you guess to define addition and scalar multiplication of points in a three-dimensional setting? 

 �
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� + �

𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
� = �

𝑥𝑥1 + 𝑦𝑦1
𝑥𝑥2 + 𝑦𝑦2
𝑥𝑥3 + 𝑦𝑦3

� 

 𝑘𝑘 ∙ �
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� = �

𝑘𝑘 ∙ 𝑥𝑥1
𝑘𝑘 ∙ 𝑥𝑥2
𝑘𝑘 ∙ 𝑥𝑥3

� 

 What might it mean for a function 𝐿𝐿:ℝ3 → ℝ3 to be a linear transformation? 

 If 𝑥𝑥 and 𝑦𝑦 are points in ℝ3 and 𝑘𝑘 is any real number, then we should have 𝐿𝐿(𝑥𝑥 + 𝑦𝑦) = 𝐿𝐿(𝑥𝑥) + 𝐿𝐿(𝑦𝑦) and 
𝐿𝐿(𝑘𝑘 ∙ 𝑥𝑥) = 𝑘𝑘 ∙ 𝐿𝐿(𝑥𝑥). 

 Any ideas about how to represent such transformations? 

 Perhaps a 3 × 3 matrix will come into play! 
 One last point to ponder:  we’ve explored the geometric effects of linear transformations in one and two 

dimensions.  Give some thought to what effects linear transformations might have in a three-dimensional 
setting.  We’ll take up this issue further in the next lesson!  
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Closing (10 minutes) 

The students should complete a graphic organizer that summarizes their understanding of linear transformations.  They 
can work for a few minutes independently, and then compare their results with a partner.  During the last few minutes, 
volunteers can share the information they included in their graphic organizers.  They can share this information aloud or 
display it on the board so that students can make revisions to their organizers.  A suggested format for the organizer is 
shown. 

 𝑳𝑳: ℝ → ℝ 𝑳𝑳: ℂ → ℂ 𝑳𝑳: ℝ𝟐𝟐 → ℝ𝟐𝟐 𝑳𝑳: ℝ𝟑𝟑 → ℝ𝟑𝟑 

Conditions for L     

General form of L     

What L represents     

Note:  Students will form conjectures about linear transformations in three-dimensional space, which will be discussed 
further in later lessons. 

 

Exit Ticket (5 minutes)   
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Name                                   Date                          

Lesson 4:  Linear Transformations Review 

 
Exit Ticket 
 
1. In Module 1, we learned about linear transformations for any real-number functions.  What are the conditions of a 

linear transformation?  If a real-number function is a linear transformation, what is its form?  What are the two 
characteristics of the function? 

 

 
 

 

 

 

2. Describe the geometric effect of each mapping: 
a. 𝐿𝐿(𝑥𝑥) = 3𝑥𝑥 

 

 

 

b. 𝐿𝐿(𝑧𝑧) = (√2 + √2𝑖𝑖) ∙ 𝑧𝑧 
 

 

 

c. 𝐿𝐿(𝑧𝑧) = �0 −1
1 0 � �

𝑥𝑥
𝑦𝑦�, where 𝑧𝑧 is a complex number 

 

 

 

d. 𝐿𝐿(𝑧𝑧) = �2 0
0 2� �

𝑥𝑥
𝑦𝑦�, where 𝑧𝑧 is a complex number 
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Exit Ticket Sample Solutions 
 

1. In Module 1, we learned about linear transformations for any real-number functions.  What are the conditions of a 
linear transformation?  If a real-number function is a linear transformation, what is its form?  What are the two 
characteristics of the function? 

𝑳𝑳(𝒙𝒙 + 𝒚𝒚) = 𝑳𝑳(𝒙𝒙) + 𝑳𝑳(𝒚𝒚), 𝑳𝑳(𝒌𝒌𝒙𝒙) = 𝒌𝒌𝑳𝑳(𝒙𝒙), where 𝒙𝒙,𝒚𝒚, and 𝒌𝒌 are real numbers.  

It is in the form of 𝑳𝑳(𝒙𝒙) = 𝒎𝒎𝒙𝒙, and its graph is a straight line going through the origin.  It is an odd function. 

 

2. Describe the geometric effect of each mapping: 

a. 𝑳𝑳(𝒙𝒙) = 𝟑𝟑𝒙𝒙  

Dilate the interval by a factor of 𝟑𝟑.   

 

b. 𝑳𝑳(𝒛𝒛) = (√𝟐𝟐+ √𝟐𝟐𝒊𝒊) ∙ 𝒛𝒛  

Rotate 
𝝅𝝅
𝟒𝟒

 radians counterclockwise about the origin. 

 

c. 𝑳𝑳(𝒛𝒛) = �𝟎𝟎 −𝟏𝟏
𝟏𝟏 𝟎𝟎 � �

𝒙𝒙
𝒚𝒚�, where 𝒛𝒛 is a complex number 

Rotate 𝝅𝝅 radians counterclockwise about the origin. 

 

d. 𝑳𝑳(𝒛𝒛) = �𝟐𝟐 𝟎𝟎
𝟎𝟎 𝟐𝟐� �

𝒙𝒙
𝒚𝒚�, where 𝒛𝒛 is a complex number 

Dilate 𝒛𝒛 by a factor of 𝟐𝟐. 

 

 
 
Problem Set Sample Solutions 

 

1. Suppose you have a linear transformation 𝑳𝑳:ℝ → ℝ, where 𝑳𝑳(𝟑𝟑) = 𝟔𝟔,𝑳𝑳(𝟓𝟓) = 𝟏𝟏𝟎𝟎. 

a. Use the addition property to find 𝑳𝑳(𝟔𝟔),𝑳𝑳(𝟖𝟖),𝑳𝑳(𝟏𝟏𝟎𝟎), and 𝑳𝑳(𝟏𝟏𝟑𝟑). 

𝑳𝑳(𝟔𝟔) = 𝑳𝑳(𝟑𝟑+ 𝟑𝟑) = 𝑳𝑳(𝟑𝟑) + 𝑳𝑳(𝟑𝟑) = 𝟔𝟔 + 𝟔𝟔 = 𝟏𝟏𝟐𝟐 

𝑳𝑳(𝟖𝟖) = 𝑳𝑳(𝟑𝟑+ 𝟓𝟓) = 𝑳𝑳(𝟑𝟑) + 𝑳𝑳(𝟓𝟓) = 𝟔𝟔 + 𝟏𝟏𝟎𝟎 = 𝟏𝟏𝟔𝟔 

𝑳𝑳(𝟏𝟏𝟎𝟎) = 𝑳𝑳(𝟓𝟓) + 𝑳𝑳(𝟓𝟓) = 𝟏𝟏𝟎𝟎+ 𝟏𝟏𝟎𝟎 = 𝟐𝟐𝟎𝟎 

𝑳𝑳(𝟏𝟏𝟑𝟑) = 𝑳𝑳(𝟏𝟏𝟎𝟎+ 𝟑𝟑) = 𝑳𝑳(𝟏𝟏𝟎𝟎) + 𝑳𝑳(𝟑𝟑) = 𝟐𝟐𝟎𝟎+ 𝟔𝟔 = 𝟐𝟐𝟔𝟔 

 

b. Use the multiplication property to find 𝑳𝑳(𝟏𝟏𝟓𝟓),𝑳𝑳(𝟏𝟏𝟖𝟖), and 𝑳𝑳(𝟑𝟑𝟎𝟎). 

𝑳𝑳(𝟏𝟏𝟓𝟓) = 𝑳𝑳(𝟑𝟑 ∙ 𝟓𝟓) = 𝟑𝟑 ∙ 𝑳𝑳(𝟓𝟓) = 𝟑𝟑 ∙ 𝟏𝟏𝟎𝟎 = 𝟑𝟑𝟎𝟎 

𝑳𝑳(𝟏𝟏𝟖𝟖) = 𝑳𝑳(𝟑𝟑 ∙ 𝟔𝟔) = 𝟑𝟑 ∙ 𝑳𝑳(𝟔𝟔) = 𝟑𝟑 ∙ 𝟏𝟏𝟐𝟐 = 𝟑𝟑𝟔𝟔 

𝑳𝑳(𝟑𝟑𝟎𝟎) = 𝑳𝑳(𝟓𝟓 ∙ 𝟔𝟔) = 𝟓𝟓 ∙ 𝑳𝑳(𝟔𝟔) = 𝟓𝟓 ∙ 𝟏𝟏𝟐𝟐 = 𝟔𝟔𝟎𝟎 
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c. Find 𝑳𝑳(−𝟑𝟑),𝑳𝑳(−𝟖𝟖), and 𝑳𝑳(−𝟏𝟏𝟓𝟓) 

𝑳𝑳(−𝟑𝟑) = 𝑳𝑳(−𝟏𝟏 ∙ 𝟑𝟑) = −𝟏𝟏 ∙ 𝑳𝑳(𝟑𝟑) = −𝟔𝟔 

𝑳𝑳(−𝟖𝟖) = 𝑳𝑳(−𝟏𝟏 ∙ 𝟖𝟖) = −𝟏𝟏 ∙ 𝑳𝑳(𝟖𝟖) = −𝟏𝟏𝟔𝟔 

𝑳𝑳(−𝟏𝟏𝟓𝟓) = 𝑳𝑳(−𝟑𝟑 ∙ 𝟓𝟓) = −𝟑𝟑 ∙ 𝑳𝑳(𝟓𝟓) = −𝟑𝟑 ∙ 𝟏𝟏𝟎𝟎 = −𝟑𝟑𝟎𝟎 

 

d. Find the formula for 𝑳𝑳(𝒙𝒙).   

Given 𝑳𝑳(𝒙𝒙) is a linear transformation; therefore, it must have a form of 𝑳𝑳(𝒙𝒙) = 𝒎𝒎𝒙𝒙, where 𝒎𝒎 is real number.  

Given 𝑳𝑳(𝟑𝟑) = 𝟔𝟔; therefore, 𝟑𝟑𝒎𝒎 = 𝟔𝟔, 𝒎𝒎 = 𝟐𝟐.  𝑳𝑳(𝒙𝒙) = 𝟐𝟐𝒙𝒙. 

 

e. Draw the graph of the function 𝑳𝑳(𝒙𝒙).    

 

2. A linear transformation 𝑳𝑳: ℝ → ℝ must have the form of 𝑳𝑳(𝒙𝒙) = 𝒂𝒂𝒙𝒙 for some real number 𝒂𝒂.  Consider the  
interval [−𝟓𝟓,𝟐𝟐].  Describe the geometric effect of the following, and find the new interval.   

a. 𝑳𝑳(𝒙𝒙) = 𝟓𝟓𝒙𝒙 

It dilates the interval by a scale factor of 𝟓𝟓; [−𝟐𝟐𝟓𝟓,𝟏𝟏𝟎𝟎].   

 

b. 𝑳𝑳(𝒙𝒙) = −𝟐𝟐𝒙𝒙 

It reflects the interval over the origin and then dilates it with a scale factor of 𝟐𝟐; [−𝟒𝟒,𝟏𝟏𝟎𝟎]. 

 

3. A linear transformation 𝑳𝑳: ℝ → ℝ must have the form of 𝑳𝑳(𝒙𝒙) = 𝒂𝒂𝒙𝒙 for some real number 𝒂𝒂.  Consider the interval 
[−𝟐𝟐,𝟔𝟔].  Write the formula for the mapping described, and find the new interval.   

a. A reflection over the origin. 

𝑳𝑳(𝒙𝒙) = −𝒙𝒙,     [−𝟔𝟔,𝟐𝟐] 

 

b. A dilation with a scale of √𝟐𝟐. 

𝑳𝑳(𝒙𝒙) = √𝟐𝟐 ∙ 𝒙𝒙,     �−𝟐𝟐√𝟐𝟐,𝟔𝟔√𝟐𝟐� 

 

c. A reflection over the origin and a dilation with a scale of 
𝟏𝟏
𝟐𝟐

. 

𝑳𝑳(𝒙𝒙) = −𝟏𝟏
𝟐𝟐𝒙𝒙,     [−𝟑𝟑,𝟏𝟏] 

 

 

 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 
 
 
 
 

    

 

 

NYS COMMON CORE MATHEMATICS CURRICULUM M2 Lesson 4 
PRECALCULUS AND ADVANCED TOPICS 

Lesson 4: Linear Transformations Review 
Date: 1/30/15 
 

78 

© 2015 Common Core, Inc. Some rights reserved. commoncore.org This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

d. A collapse of the interval to the number 𝟎𝟎. 

𝑳𝑳(𝒙𝒙) = 𝟎𝟎𝒙𝒙,    [𝟎𝟎,𝟎𝟎] 

 

4. In Module 1, we used 𝟐𝟐 × 𝟐𝟐 matrices to do transformations on a square, such as a pure rotation, a pure reflection, a 
pure dilation, and a rotation with a dilation.  Now use those matrices to do transformations on this complex 
number:  𝒛𝒛 = 𝟐𝟐+ 𝒊𝒊.  For each transformation below, graph your answers. 

a. A pure dilation with a factor of 𝟐𝟐. 

�𝟐𝟐 𝟎𝟎
𝟎𝟎 𝟐𝟐�,  𝑳𝑳(𝒛𝒛) = �𝟐𝟐 𝟎𝟎

𝟎𝟎 𝟐𝟐��
𝟐𝟐
𝟏𝟏� = �𝟒𝟒𝟐𝟐� 

 

b. A pure 
𝝅𝝅
𝟐𝟐

 radians counterclockwise rotation about the origin. 

�𝟎𝟎 −𝟏𝟏
𝟏𝟏 𝟎𝟎 �,  𝑳𝑳(𝒛𝒛) = �𝟎𝟎 −𝟏𝟏

𝟏𝟏 𝟎𝟎 ��𝟐𝟐𝟏𝟏� = �−𝟏𝟏𝟐𝟐 � 

 

c. A pure 𝝅𝝅 radians counterclockwise rotation about the origin. 

�−𝟏𝟏 𝟎𝟎
𝟎𝟎 −𝟏𝟏�,  𝑳𝑳(𝒛𝒛) = �−𝟏𝟏 𝟎𝟎

𝟎𝟎 −𝟏𝟏� �
𝟐𝟐
𝟏𝟏� = �−𝟐𝟐−𝟏𝟏� 

 

d. A pure reflection about the real axis. 

�𝟏𝟏 𝟎𝟎
𝟎𝟎 −𝟏𝟏�,  𝑳𝑳(𝒛𝒛) = �𝟏𝟏 𝟎𝟎

𝟎𝟎 −𝟏𝟏��
𝟐𝟐
𝟏𝟏� = � 𝟐𝟐−𝟏𝟏� 
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e. A pure reflection about the imaginary axis. 

�−𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟏𝟏�,  𝑳𝑳(𝒛𝒛) = �−𝟏𝟏 𝟎𝟎

𝟎𝟎 𝟏𝟏� �
𝟐𝟐
𝟏𝟏� = �−𝟐𝟐𝟏𝟏 � 

 

f. A pure reflection about the line 𝒚𝒚 = 𝒙𝒙. 

�𝟎𝟎 𝟏𝟏
𝟏𝟏 𝟎𝟎�,  𝑳𝑳(𝒛𝒛) = �𝟎𝟎 𝟏𝟏

𝟏𝟏 𝟎𝟎��
𝟐𝟐
𝟏𝟏� = �𝟏𝟏𝟐𝟐� 

 

g. A pure reflection about the line 𝒚𝒚 = −𝒙𝒙. 

� 𝟎𝟎 −𝟏𝟏
−𝟏𝟏 𝟎𝟎 �,  𝑳𝑳(𝒛𝒛) = � 𝟎𝟎 −𝟏𝟏

−𝟏𝟏 𝟎𝟎 � �𝟐𝟐𝟏𝟏� = �−𝟏𝟏−𝟐𝟐� 

 

5. Wesley noticed that by multiplying the matrix �𝟎𝟎 −𝟏𝟏
𝟏𝟏 𝟎𝟎 � by a complex number 𝒛𝒛 produces a pure 

𝝅𝝅
𝟐𝟐

 radians  
 

counterclockwise rotation, and multiplying by �𝟐𝟐 𝟎𝟎
𝟎𝟎 𝟐𝟐� produces a pure dilation with a factor of 𝟐𝟐.  So, he thinks he  

 

can add these two matrices, which will produce �𝟐𝟐 −𝟏𝟏
𝟏𝟏 𝟐𝟐 � and will rotate 𝒛𝒛 by 

𝝅𝝅
𝟐𝟐

 radians counterclockwise and dilate  
 

𝒛𝒛 with a factor of 𝟐𝟐.  Is he correct?  Explain your reason. 

No, he is not correct.  For the general transformation of complex numbers, the form is 𝑳𝑳(𝒁𝒁) = �𝒂𝒂 −𝒃𝒃
𝒃𝒃 𝒂𝒂 ��

𝒙𝒙
𝒚𝒚�.  

By multiplying the matrix �𝒂𝒂 −𝒃𝒃
𝒃𝒃 𝒂𝒂 � to 𝒛𝒛, it rotates 𝒛𝒛 an angle 𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚�𝒃𝒃𝒂𝒂�, and dilates 𝒛𝒛 with a factor of √𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐.  

𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 �𝟏𝟏𝟐𝟐� =  𝟐𝟐𝟔𝟔.𝟓𝟓𝟔𝟔𝟓𝟓° , and �(𝟏𝟏)𝟐𝟐 + (𝟐𝟐)𝟐𝟐 = √𝟓𝟓, which is not 
𝝅𝝅
𝟐𝟐

 radians or a dilation of a factor of 𝟐𝟐.  
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6. In Module 1, we learned that there is not any real number that will satisfy 
𝟏𝟏

𝒂𝒂+𝒃𝒃
=
𝟏𝟏
𝒂𝒂

+
𝟏𝟏
𝒃𝒃

, which is the addtition 

property of linear transformation.  However, we discussed that some fixed complex numbers might work.  Can you 
find two pairs of complex numbers that will work?  Show you work. 

Given 
𝟏𝟏

𝒂𝒂+𝒃𝒃
=
𝟏𝟏
𝒂𝒂

+
𝟏𝟏
𝒃𝒃

,  𝒂𝒂,𝒃𝒃 ≠ 𝟎𝟎, 𝟏𝟏
𝒂𝒂+𝒃𝒃 = 𝒃𝒃+𝒂𝒂

𝒂𝒂𝒃𝒃 , 𝒂𝒂𝒃𝒃 = (𝒂𝒂 + 𝒃𝒃)𝟐𝟐, 𝒂𝒂𝒃𝒃 = 𝒂𝒂𝟐𝟐 + 𝟐𝟐𝒂𝒂𝒃𝒃+ 𝒃𝒃𝟐𝟐, 

  𝒂𝒂𝟐𝟐 + 𝒂𝒂𝒃𝒃 + 𝒃𝒃𝟐𝟐 = 𝟎𝟎 ,  𝒂𝒂𝟐𝟐 + 𝒂𝒂𝒂𝒂+ 𝟏𝟏
𝟒𝟒𝒃𝒃

𝟐𝟐 = −𝟑𝟑
𝟒𝟒𝒃𝒃

𝟐𝟐,�𝒂𝒂 + 𝟏𝟏
𝟐𝟐  𝒃𝒃�

𝟐𝟐
= −𝟑𝟑

𝟒𝟒𝒃𝒃
𝟐𝟐, 𝒂𝒂 + 𝟏𝟏

𝟐𝟐𝒃𝒃 = ±
�𝟑𝟑
𝟐𝟐 𝒃𝒃 ∙ 𝒊𝒊 

𝒂𝒂 = −𝟏𝟏±�𝟑𝟑∙𝒊𝒊
𝟐𝟐 𝒃𝒃, for example, 𝒃𝒃 = 𝟐𝟐 and 𝒂𝒂 = −𝟏𝟏+ √𝟑𝟑 ∙ 𝒊𝒊, 𝒃𝒃 = 𝟒𝟒 and 𝒂𝒂 = −𝟐𝟐 + 𝟐𝟐√𝟑𝟑 ∙ 𝒊𝒊  

 

7. Suppose 𝑳𝑳 is a complex-number function that satisfies the dream conditions:  𝑳𝑳(𝒛𝒛+ 𝒘𝒘) = 𝑳𝑳(𝒛𝒛) + 𝑳𝑳(𝒘𝒘) and  
𝑳𝑳(𝒌𝒌𝒛𝒛) = 𝒌𝒌(𝒛𝒛) for all complex numbers 𝒛𝒛,𝒘𝒘, and 𝒌𝒌.  Show 𝑳𝑳(𝒛𝒛) = 𝒎𝒎𝒛𝒛 for a fixed complex-number 𝒎𝒎, the only type 
of complex-number function that satisfies these conditions? 

Let 𝒛𝒛 = 𝒂𝒂 + 𝒃𝒃𝒊𝒊, 𝒘𝒘 = 𝒄𝒄 + 𝒂𝒂𝒊𝒊 , for addition property: 

𝑳𝑳(𝒛𝒛 +𝒘𝒘) = 𝑳𝑳(𝒛𝒛) + 𝑳𝑳(𝒘𝒘) = 𝒎𝒎(𝒂𝒂+ 𝒃𝒃𝒊𝒊) +𝒎𝒎(𝒄𝒄 + 𝒂𝒂𝒊𝒊) = 𝒎𝒎[(𝒂𝒂 + 𝒄𝒄) + (𝒃𝒃+ 𝒂𝒂)𝒊𝒊]  

𝑳𝑳(𝒛𝒛 +𝒘𝒘) = 𝑳𝑳(𝒂𝒂 + 𝒃𝒃𝒊𝒊 + 𝒄𝒄 + 𝒂𝒂𝒊𝒊) = 𝑳𝑳�(𝒂𝒂 + 𝒄𝒄) + (𝒃𝒃 + 𝒂𝒂)𝒊𝒊� = 𝒎𝒎�(𝒂𝒂 + 𝒄𝒄) + (𝒃𝒃 + 𝒂𝒂)𝒊𝒊�; they are the same. 

For multiplication property: 

𝑳𝑳(𝒌𝒌𝒛𝒛) = 𝒌𝒌𝑳𝑳(𝒛𝒛) = 𝒌𝒌𝒎𝒎𝒛𝒛 = 𝒌𝒌𝒎𝒎(𝒂𝒂 + 𝒃𝒃𝒊𝒊) 

𝑳𝑳(𝒌𝒌𝒛𝒛) = 𝑳𝑳�𝒌𝒌(𝒂𝒂+ 𝒃𝒃𝒊𝒊)� = 𝒎𝒎𝒌𝒌(𝒂𝒂+ 𝒃𝒃𝒊𝒊); they are the same. 

 

8. For complex numbers, the linear transformation requires 𝑳𝑳(𝒙𝒙+ 𝒚𝒚) = 𝑳𝑳(𝒙𝒙) + 𝑳𝑳(𝒚𝒚), 𝑳𝑳(𝒂𝒂 ∙ 𝒙𝒙) = 𝒂𝒂 ∙ 𝒙𝒙.  Prove that in 

general 𝑳𝑳�
𝒙𝒙
𝒚𝒚� = �𝒂𝒂 𝒃𝒃

𝒄𝒄 𝒂𝒂� �
𝒙𝒙
𝒚𝒚� is a linear transformation, where �

𝒙𝒙
𝒚𝒚� represents 𝒛𝒛 = 𝒙𝒙 + 𝒚𝒚𝒊𝒊.    

For the addition property:  

𝑳𝑳(𝒛𝒛𝟏𝟏 + 𝒛𝒛𝟐𝟐) = 𝑳𝑳��
𝒙𝒙𝟏𝟏
𝒚𝒚𝟏𝟏� + �

𝒙𝒙𝟐𝟐
𝒚𝒚𝟐𝟐�� = 𝑳𝑳 �

𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟐𝟐
𝒚𝒚𝟏𝟏 + 𝒚𝒚𝟐𝟐

� = �𝒂𝒂 𝒄𝒄
𝒃𝒃 𝒂𝒂� �

𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟐𝟐
𝒚𝒚𝟏𝟏 + 𝒚𝒚𝟐𝟐

� = �𝒂𝒂
(𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟐𝟐) + 𝒄𝒄(𝒚𝒚𝟏𝟏 + 𝒚𝒚𝟐𝟐)

𝒃𝒃(𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟐𝟐) + 𝒂𝒂(𝒚𝒚𝟏𝟏 + 𝒚𝒚𝟐𝟐)�  

𝑳𝑳(𝒛𝒛𝟏𝟏 + 𝒛𝒛𝟐𝟐) = 𝑳𝑳(𝒛𝒛𝟏𝟏) + 𝑳𝑳(𝒛𝒛𝟐𝟐) = �𝒂𝒂 𝒄𝒄
𝒃𝒃 𝒂𝒂� �

𝒙𝒙𝟏𝟏
𝒚𝒚𝟏𝟏� + �𝒂𝒂 𝒄𝒄

𝒃𝒃 𝒂𝒂� �
𝒙𝒙𝟐𝟐
𝒚𝒚𝟐𝟐� = �

𝒂𝒂𝒙𝒙𝟏𝟏 + 𝒄𝒄𝒚𝒚𝟏𝟏
𝒃𝒃𝒙𝒙𝟏𝟏 + 𝒂𝒂𝒚𝒚𝟏𝟏

�+ �
𝒂𝒂𝒙𝒙𝟐𝟐 + 𝒄𝒄𝒚𝒚𝟐𝟐
𝒃𝒃𝒙𝒙𝟐𝟐 + 𝒂𝒂𝒚𝒚𝟐𝟐

� =

�
𝒂𝒂𝒙𝒙𝟏𝟏 + 𝒄𝒄𝒚𝒚𝟏𝟏 + 𝒂𝒂𝒙𝒙𝟐𝟐 + 𝒄𝒄𝒚𝒚𝟐𝟐
𝒃𝒃𝒙𝒙𝟏𝟏 + 𝒂𝒂𝒚𝒚𝟏𝟏 + 𝒃𝒃𝒙𝒙𝟐𝟐 + 𝒂𝒂𝒚𝒚𝟐𝟐

� = �𝒂𝒂
(𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟐𝟐) + 𝒄𝒄(𝒚𝒚𝟏𝟏 + 𝒚𝒚𝟐𝟐)

𝒃𝒃(𝒙𝒙𝟏𝟏 + 𝒙𝒙𝟐𝟐) + 𝒂𝒂(𝒚𝒚𝟏𝟏 + 𝒚𝒚𝟐𝟐)�, the result is the same.  

Now we need to prove the multiplication property. 

𝑳𝑳(𝒌𝒌𝒛𝒛) = 𝑳𝑳�𝒌𝒌 �
𝒙𝒙
𝒚𝒚�� = 𝑳𝑳 �𝒌𝒌𝒙𝒙𝒌𝒌𝒚𝒚� = �𝒂𝒂 𝒄𝒄

𝒃𝒃 𝒂𝒂� �
𝒌𝒌𝒙𝒙
𝒌𝒌𝒚𝒚� = �𝒂𝒂𝒌𝒌𝒙𝒙+ 𝒄𝒄𝒌𝒌𝒚𝒚

𝒃𝒃𝒌𝒌𝒙𝒙 + 𝒂𝒂𝒌𝒌𝒚𝒚�  

𝑳𝑳(𝒌𝒌𝒛𝒛) = 𝒌𝒌𝑳𝑳(𝒛𝒛) = 𝒌𝒌�𝒂𝒂 𝒄𝒄
𝒃𝒃 𝒂𝒂� �

𝒙𝒙
𝒚𝒚� = 𝒌𝒌�

𝒂𝒂𝒙𝒙+ 𝒄𝒄𝒚𝒚
𝒃𝒃𝒙𝒙+ 𝒂𝒂𝒚𝒚� = �𝒂𝒂𝒌𝒌𝒙𝒙 + 𝒄𝒄𝒌𝒌𝒚𝒚

𝒃𝒃𝒌𝒌𝒙𝒙 + 𝒂𝒂𝒌𝒌𝒚𝒚�; the result is the same. 
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