

Student Outcomes

- Students represent complex numbers as vectors.
- Students represent complex number addition and subtraction geometrically using vectors.

Lesson Notes

Students studied vectors as directed line segments in Grade 8, and in this lesson, we use vectors to represent complex numbers in the coordinate plane. This representation presents a geometric interpretation of addition and subtraction of complex numbers and is needed to make the case in Lesson 15 that when multiplying two complex numbers z and w, the argument of the product is the sum of the arguments: $\arg(zw) = \arg(z) + \arg(w)$.

This lesson aligns with **N-CN.B.5**: Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation.

The following vocabulary terms from Grade 8 are needed in this lesson:

VECTOR: A vector associated to the directed line segment \overline{AB} is any directed segment that is congruent to the directed segment \overline{AB} using only translations of the plane.

DIRECTED SEGMENT: A directed segment \overrightarrow{AB} is the line segment \overrightarrow{AB} together with a direction given by connecting an initial point A to a terminal point B.

The study of vectors will form a vital part of this course; notation for vectors varies across different contexts and curricula. These materials will refer to a vector as \mathbf{v} (lowercase, bold, non-italicized) or $\langle 4, 5 \rangle$ or in column format, $\begin{pmatrix} 4 \\ 5 \end{pmatrix}$

or $\begin{bmatrix} 4 \\ 5 \end{bmatrix}$.

We will use "let $\mathbf{v} = \langle 4, 5 \rangle$ " to establish a name for the vector $\langle 4, 5 \rangle$.

This curriculum will avoid stating $\mathbf{v} = \langle 4, 5 \rangle$ without the word *let* preceding the equation when naming a vector unless it is absolutely clear from the context that we are naming a vector. However, we will continue to use the "=" to describe vector equations, like $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$, as we have done with equations throughout all other grades.

We will refer to the vector from A to B as "vector \overrightarrow{AB} "—notice, this is a ray with a full arrow. This notation is consistent with the way vectors are introduced in Grade 8 and is also widely used in post-secondary textbooks to describe both a ray and a vector depending on the context. To avoid confusion in this curriculum, the context will be provided or strongly implied, so it will be clear whether the full arrow indicates a vector or a ray. For example, when referring to a ray from A passing through B, we will say "ray \overrightarrow{AB} " and when referring to a vector from A to B, we will say "vector \overrightarrow{AB} ." Students should be encouraged to think about the context of the problem and not just rely on a hasty inference based on the symbol.

The magnitude of a vector will be signified as $\|v\|$ (lowercase, bold, non-italicized).

Classwork

Opening Exercise (4 minutes)

The Opening Exercise reviews complex number arithmetic. We will revisit this example later in the lesson when we study the geometric interpretation of complex addition and subtraction using a vector representation of complex numbers. Students should work on these exercises either individually or in pairs.

Opening Exercise Perform the indicated arithmetic operations for complex numbers z = -4 + 5i and w = -1 - 2i. z + wа. z + w = -5 + 3ib. z - wz - w = -3 + 7iz + 2wc. z + 2w = -6 + id. z - zz - z = 0 + 0iExplain how you add and subtract complex numbers. e. Add or subtract the real components and the imaginary components separately.

Discussion (6 minutes)

- In Lesson 5, we represented a complex number a + bi as the point (a, b) in the coordinate plane. Another way we can represent a complex number in the coordinate plane is as a vector. Recall the definition of a vector from Grade 8, which is that a vector AB is a directed segment from point A in the plane to point B, which we draw as an arrow from point A to point B. Since we can represent a complex number z = a + bi as the point (a, b) in the plane, and we can use a vector to represent the directed segment from the origin to the point (a, b), we can represent a complex number as a vector in the plane. The vector representing the complex number z = -3 + 4i is shown.
- The length of a vector \overrightarrow{AB} is the distance from the tail A of the vector to the tip B. For our purposes, the tail is the origin, and the tip is the point z = (a + bi) in the coordinate plane.

Complex Numbers as Vectors 1/30/15

M1

- A vector consists of a length and a direction. To get from point A to point B, you move a distance AB in the direction of the vector \overrightarrow{AB} . So, to move from the origin to point z = a + bi, we move the length of a + bi in the direction of the line from the origin to (a, b). (This idea will be important later in the lesson when we use vectors to add and subtract complex numbers.)
- What is the length of the vector that represents the complex number $z_1 = -3 + 4i$?
 - Since $\sqrt{(-3-0)^2 + (4-0)^2} = \sqrt{9+16} = 5$, the length of the vector that represents z_1 is 5.
- What is the length of the vector that represents the complex number $z_2 = 2 7i$?
 - Since $\sqrt{(2-0)^2 + (-7-0)^2} = \sqrt{4+49} = \sqrt{53}$, the length of the vector that represents z_2 is $\sqrt{53}$.
- What is the length of the vector that represents the complex number $z_3 = a + bi$?
 - Since $\sqrt{(a-0)^2 + (b-0)^2} = \sqrt{a^2 + b^2}$, the length of the vector that represents z_3 is $\sqrt{a^2 + b^2}$.

Exercise 1 (8 minutes)

Have students work Exercise 1 in pairs or small groups. Circulate to be sure that students are correctly plotting the complex numbers in the plane and correctly computing the lengths of the resulting vectors.

Lesson 6: Date:

Complex Numbers as Vectors 1/30/15

MP.

MP.2

&

MP.3

ИР 1

What do you observe about all of these vectors?

Students should observe that the tips of the vectors lie on the circle of radius 10 centered at the origin.

Discussion (10 minutes)

Proceed slowly through this discussion, drawing plenty of figures to clarify the process of adding two vectors.

- Using vectors, how can we add two complex numbers? We know from the Opening Exercise that if
- z = -4 + 5i and w = -1 2i, z + w = -5 + 3i. How could we show this is true using vectors?
 - We know that if we think of vectors as a length and a direction, the sum z + w is the distance we need to move from the origin in the direction of the vector z + w to get to the point z + w. We can get from the origin to point z + w by first moving from the origin to point z and then moving from point z to point w.
- Using coordinates, this means that to find z + w, we do the following:
 - 1. Starting at the origin, move 4 units left and 5 units up to the tip of the vector representing z.
 - 2. From point *z*, move 1 unit left and two units down.
 - 3. The resulting point is z + w.
- Using vectors, we can locate point z + w by the tip-to-tail method: Translate the vector that represents w so that the tip of z is at the same point as the tail of the new vector that represents w. The tip of this new translated vector is the sum z + w. See the sequence of graphs below.

- How would we find z w using vectors?
 - We could think of z - w as z + (-w) since we already know how to add vectors.
- Thinking of a vector as a length and a direction, how does -w relate to w?
 - The vector -w would have the same length as w but the opposite direction.

Scaffolding:

For advanced students, discuss how to find z - w using the original parallelogram; that is, z - w is the vector from the tip of w to the tip of z and then translated to the origin. Discuss how this is the same as subtraction in one dimension.

Complex Numbers as Vectors 1/30/15

• Yes. So, we need to add -w to z. To find -w, we reverse its direction. See the sequence of graphs below.

• In the Opening Exercise, we found that z - w = -3 + 7i. Does that agree with our calculation using vectors? • *Yes.*

Exercises 2-6 (8 minutes)

Have students work on these exercises in pairs or small groups.

COMMON CORE

Lesson 6: Cor Date: 1/3

Complex Numbers as Vectors 1/30/15

73

Closing (4 minutes)

Ask students to write in their journal or notebook to explain the process of representing a complex number by a vector and the processes for adding and subtracting two vectors. Key points are summarized in the box below.

Exit Ticket (5 minutes)

Complex Numbers as Vectors

Date:

Name

Date _____

Lesson 6: Complex Numbers as Vectors

Exit Ticket

Let z = -1 + 2i and w = 2 + i. Find the following, and verify each geometrically by graphing z, w, and each result.

- a. *z* + *w* 4 3. 2. b. *z* – *w* Λ -5 5 -4 -3 -2 -1 0 2 3 4 c. 2*z* − *w* -2 -3 -4 -5
 - d. *w z*

Complex Numbers as Vectors 1/30/15

75

Exit Ticket Sample Solutions

Problem Set Sample Solutions

```
Let z = 1 + i and w = 1 - 3i. Find the following. Express your answers in a + bi form.
1.
         z + w
     a.
          1 + i + 1 - 3i = 2 - 2i
         z - w
     b.
          1 + i - (1 - 3i) = 1 + i - 1 + 3i
                          = 0 + 4i
          4w
     c.
          4(1-3i) = 4-12i
         3z + w
     d.
          3(1+i) + 1 - 3i = 3 + 3i + 1 - 3i
                            = 4 + 0i
          -w-2z
     e.
           -(1-3i) - 2(1+i) = -1 + 3i - 2 - 2i
                               = -3 + i
     f.
          What is the length of the vector representing z?
           The length of the vector representing z is \sqrt{1^2+1^2}=\sqrt{2}.
```


© 2014 Common Core, Inc. Some rights reserved. commoncore.org

 Lesson 6:
 Complex

 Date:
 1/30/15

engage^{ny}

Complex Numbers as Vectors 1/30/15

Lesson 6:Complex Numbers as VectorsDate:1/30/15

ny

engage

Complex Numbers as Vectors 1/30/15

Complex Numbers as Vectors 1/30/15

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.</u>