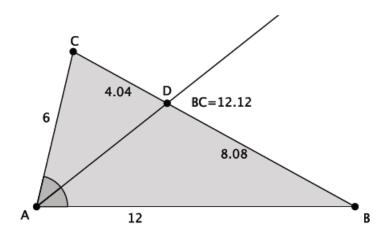
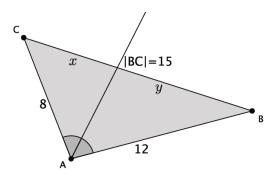
Lesson 18: Similarity and the Angle Bisector Theorem

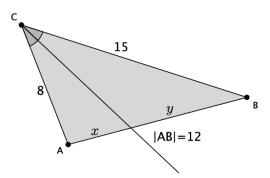

Classwork

Opening Exercise

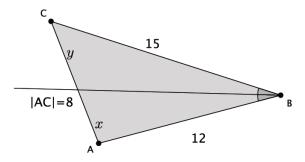
- a. What is an angle bisector?
- b. Describe the angle relationships formed when parallel lines are cut by a transversal.
- c. What are the properties of an isosceles triangle?

Discussion


In the diagram below, the angle bisector of $\angle A$ in \triangle ABC meets side BC at point D. Does the angle bisector create any observable relationships with respect to the side lengths of the triangle?

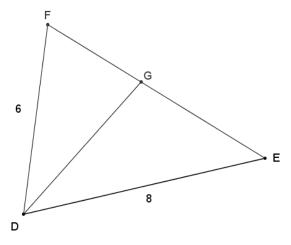

(cc) BY-NC-SA

Exercises 1-4

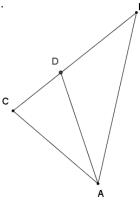

1. The sides of a triangle are 8, 12, and 15. An angle bisector meets the side of length 15. Find the lengths x and y. Explain how you arrived at your answers.

2. The sides of a triangle are 8, 12, and 15. An angle bisector meets the side of length 12. Find the lengths x and y.

3. The sides of a triangle are 8, 12, and 15. An angle bisector meets the side of length 8. Find the lengths x and y.

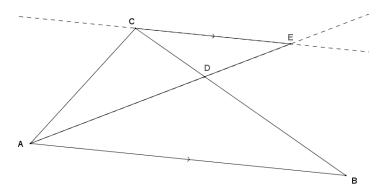


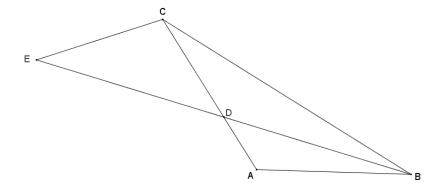
4. The angle bisector of an angle splits the opposite side of a triangle into lengths 5 and 6. The perimeter of the triangle is 33. Find the lengths of the other two sides.


(ce) BY-NC-SA

Problem Set

- 1. The sides of a triangle have lengths of 5, 8, and $6\frac{1}{2}$. An angle bisector meets the side of length $6\frac{1}{2}$. Find the lengths x and y.
- 2. The sides of a triangle are $10\frac{1}{2}$, $16\frac{1}{2}$, and 9. An angle bisector meets the side of length 9. Find the lengths x and y.
- 3. In the diagram of triangle \overline{DEF} below, \overline{DG} is an angle bisector, E=8, DF=6, and $EF=8\frac{1}{6}$. Find FG and EG.


4. $\angle BAD \cong \angle DAC$, show that BD: BA = CD: CA.


- 5. The perimeter of triangle LMN is 32 cm. \overline{NX} is the angle bisector of angle N, LX=3 cm, and XM=5 cm. Find LN and MN.
- 6. Given CD=3, DB=4, BF=4, FE=5, AB=6, and $\angle CAD\cong \angle DAB\cong \angle BAF\cong \angle FAE$, find the perimeter of quadrilateral AEBC

(cc) BY-NC-SA

7. If \overline{AE} meets \overline{BC} at D such that CD:BD=CA:BA, show that $\angle CAD\cong \angle BAD$. Explain how this proof relates to the angle bisector theorem.

8. In the diagram below, $\overline{ED} \cong \overline{DB}$, \overline{BE} bisects $\angle ABC$, AD=4, and DC=8. Prove that $\triangle ADB \sim \triangle CEB$.

