

# Lesson 19: Sampling Variability in the Sample Mean

#### **Student Outcomes**

- Students understand the term "sampling variability" in the context of estimating a population mean.
- Students understand that the standard deviation of the sampling distribution of the sample mean conveys information about the anticipated accuracy of the sample mean as an estimate of the population mean.

#### **Lesson Notes**

This is the second of two lessons building on the concept of sampling variability in the sample mean first developed in Grade 7 (Module 5, Lessons 17–19). Students use simulation to approximate the sampling distribution of the sample mean for random samples from a population. They also explore how the simulated sampling distribution provides information about the anticipated estimation error when using a sample mean to estimate a population mean and how sample size affects the distribution of the sample mean.

#### Classwork

This lesson uses simulation to approximate the sampling distribution of the sample mean for random samples from a population, explores how the simulated sampling distribution provides insight into the anticipated estimation error when using a sample mean to estimate a population mean, and covers how sample size affects the distribution of the sample mean.

#### Exercises 1–6 (35 minutes): SAT scores

In this lesson, you may want to give students the population data and have them use technology to take random samples (without replacement) from the population. (You could copy and paste the table into a spreadsheet and send it to students.) A typical set of commands to generate a random sample might be: randsamp(SAT\_scores, 20), where SAT\_scores is the name of the list containing the scores and 20 is the sample size. The random sample should refresh by clicking on the command line or by using a command such as Control R.

Note that the sample answers for the simulated distributions typically display the means from about 50 random samples. If it is possible to generate many more samples quickly with technology, students should do so. The basic characteristics of a distribution of sample means (center, spread, mound shaped) do not change much as more samples are added to the first 50 or so—which is suggested by contrasting Exercise 3 parts (a) and (b)—and students should experience this themselves by generating their own distributions with many samples.

Part (a) of both Exercises 2 and 3 are important to discuss as they highlight the difference in the distribution of the values in the sample (the scores) and the distribution of the sample means (the mean of the scores) in a sample.



Lesson 19: Date: Sampling Variability in the Sample Mean 10/8/14





ALGEBRA II

Have students share the simulated sampling distributions they generate for Exercise 3. You might use screen capture/sharing software or have students walk around the room with post-it notes looking at each student's handheld or computer screen and recording what they see about the distributions. Recognizing that all of the simulated distributions have essentially the same characteristics is a key factor in understanding why it is possible to make general statements about how random samples behave in relation to the population.

#### Exercises 1–6: SAT scores

**MP.2** 

1. SAT test scores vary a lot. The table displays the 506 scores for students in one New York school district for a given year.

Table 1: SAT scores for district students

| 441 | 395 | 369 | 350 | 521 | 691 | 648 | 521 | 498 | 413 | 486 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 440 | 415 | 481 | 392 | 800 | 448 | 603 | 503 | 486 | 476 | 500 |
| 391 | 359 | 447 | 550 | 432 | 158 | 379 | 394 | 495 | 442 | 507 |
| 395 | 504 | 399 | 424 | 456 | 729 | 356 | 392 | 514 | 388 | 518 |
| 445 | 436 | 386 | 493 | 467 | 493 | 440 | 387 | 512 | 431 | 467 |
| 499 | 412 | 457 | 389 | 323 | 319 | 550 | 450 | 517 | 405 | 506 |
| 486 | 519 | 369 | 373 | 348 | 532 | 496 | 488 | 504 | 444 |     |
| 396 | 473 | 319 | 367 | 679 | 472 | 613 | 561 | 522 | 408 |     |
| 451 | 427 | 369 | 560 | 602 | 520 | 567 | 495 | 473 | 424 |     |
| 362 | 391 | 371 | 407 | 436 | 366 | 582 | 528 | 533 | 463 |     |
| 328 | 613 | 357 | 438 | 436 | 713 | 603 | 525 | 553 | 446 |     |
| 414 | 466 | 382 | 362 | 777 | 259 | 557 | 508 | 495 | 466 |     |
| 409 | 486 | 627 | 589 | 749 | 410 | 639 | 516 | 520 | 632 |     |
| 526 | 334 | 608 | 374 | 634 | 443 | 556 | 506 | 506 | 526 |     |
| 391 | 497 | 378 | 358 | 566 | 442 | 496 | 568 | 544 | 546 |     |
| 529 | 392 | 387 | 373 | 198 | 555 | 499 | 476 | 525 | 529 |     |
| 529 | 426 | 470 | 378 | 345 | 431 | 613 | 490 | 548 | 455 |     |
| 574 | 379 | 380 | 561 | 712 | 197 | 556 | 547 | 543 | 431 |     |
| 363 | 382 | 370 | 379 | 504 | 254 | 596 | 489 | 474 | 386 |     |
| 486 | 434 | 365 | 530 | 685 | 372 | 580 | 506 | 529 | 434 |     |
| 418 | 722 | 674 | 504 | 645 | 501 | 605 | 511 | 566 | 362 |     |
| 527 | 437 | 388 | 525 | 509 | 662 | 445 | 489 | 487 | 426 |     |
| 441 | 395 | 377 | 561 | 448 | 503 | 602 | 523 | 510 | 404 |     |
| 467 | 463 | 427 | 519 | 491 | 448 | 638 | 530 | 518 | 493 |     |
| 387 | 433 | 446 | 525 | 352 | 662 | 570 | 507 | 515 | 515 |     |
| 503 | 371 | 394 | 569 | 779 | 158 | 558 | 504 | 516 | 407 |     |
| 350 | 392 | 368 | 484 | 689 | 691 | 535 | 522 | 505 | 409 |     |
| 583 | 416 | 406 | 416 | 513 | 729 | 623 | 503 | 536 | 422 |     |
| 370 | 370 | 350 | 446 | 624 | 493 | 465 | 524 | 547 | 612 |     |
| 499 | 422 | 344 | 420 | 465 | 319 | 460 | 523 | 528 | 486 |     |
| 399 | 532 | 347 | 446 | 504 | 532 | 375 | 524 | 527 | 394 |     |
| 374 | 545 | 377 | 462 | 390 | 472 | 540 | 501 | 523 | 424 |     |
| 372 | 427 | 391 | 528 | 576 | 520 | 564 | 482 | 540 | 393 |     |
| 559 | 371 | 339 | 533 | 756 | 366 | 547 | 502 | 480 | 420 |     |
| 330 | 390 | 404 | 543 | 451 | 713 | 568 | 503 | 516 | 415 |     |
| 567 | 529 | 377 | 460 | 505 | 259 | 588 | 439 | 501 | 394 |     |
| 371 | 341 | 469 | 391 | 540 | 410 | 502 | 474 | 452 | 473 |     |
| 503 | 356 | 417 | 623 | 436 | 443 | 510 | 477 | 507 | 531 |     |
| 327 | 351 | 356 | 587 | 298 | 442 | 589 | 458 | 486 | 469 |     |
| 528 | 377 | 370 | 528 | 449 | 555 | 537 | 494 | 500 | 453 |     |
| 447 | 404 | 355 | 356 | 352 | 431 | 410 | 447 | 507 | 442 |     |
| 572 | 369 | 364 | 523 | 574 | 197 | 330 | 517 | 518 | 509 |     |
| 379 | 396 | 383 | 404 | 518 | 460 | 500 | 457 | 467 | 435 |     |
| 456 | 396 | 400 | 505 | 682 | 623 | 531 | 471 | 506 | 427 |     |
| 406 | 535 | 404 | 512 | 474 | 587 | 509 | 541 | 509 | 489 |     |
| 420 | 388 | 375 | 514 | 629 | 528 | 571 | 513 | 597 | 480 |     |
| 395 | 370 | 398 | 516 | 656 | 523 | 527 | 441 | 509 | 516 |     |
| 355 | 417 | 376 | 498 | 539 | 505 | 457 | 489 | 567 | 501 |     |
| 423 | 419 | 451 | 460 | 553 | 514 | 552 | 498 | 509 | 452 |     |
| 438 | 348 | 369 | 541 | 400 | 629 | 561 | 538 | 597 | 507 |     |



Lesson 19: Date: Sampling Variability in the Sample Mean 10/8/14



ALGEBRA II





Lesson 19: Date: Sampling Variability in the Sample Mean 10/8/14



Lesson 19

ALGEBRA II

MP.5







Lesson 19: Date: Sampling Variability in the Sample Mean 10/8/14



This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

ALGEBRA II





Lesson 19: Date: Sampling Variability in the Sample Mean 10/8/14









# Closing (5minutes)

- Why do we call the sampling distributions we generated "simulated sampling distribution of sample means" rather than the "sampling distribution of sample means"?
  - The sampling distribution of sample means is the distribution of all the possible sample means for a sample of a given size (i.e., every possible combination of the population values for that size). The simulated sampling distribution is a subset of the actual sampling distribution that, because it is random, approximates the actual sampling distribution.



Lesson 19: Date:

Sampling Variability in the Sample Mean 10/8/14



- If you had a simulated distribution of the mean SAT scores for random samples of size 100, how do you think the distribution would compare to the distribution you found for samples of size 50?
  - Sample response: The mean would be somewhere around 475, and the standard deviation would be smaller, so the values (the sample means) would be closer together.
- Ask students to summarize the main ideas of the lesson in writing or with a neighbor. Use this opportunity to
  informally assess comprehension of the lesson. The Lesson Summary below offers some important ideas that
  should be included.



### **Exit Ticket (5 minutes)**



Sampling Variability in the Sample Mean 10/8/14





Name

Date \_\_\_\_\_

# Lesson 19: Sampling Variability in the Sample Mean

## **Exit Ticket**

1. Describe the difference between a population distribution, a sample distribution, and a simulated sampling distribution and make clear how they are different.

2. Use the standard deviation and mean of the sampling distribution to describe an interval that includes most of the sample means.



Sampling Variability in the Sample Mean 10/8/14







### **Exit Ticket Sample Solutions**

1. Describe the difference between a population distribution, a sample distribution, and a simulated sampling distribution and make clear how they are different.

Possible answer: The distribution of the elements in a population (the SAT scores for students in a district) is a population distribution; the distribution of the elements in a random sample from that population (a subset of a given size chosen at random from the SAT scores) is a sample distribution; a simulated distribution of sample means for many random samples of a given size chosen from the population (the means of different random samples of the same size of students' SAT scores) is a simulated sampling distribution.

Some students might also suggest that the meaning of sampling distribution of all samples is the samples of a given size selected from a population. This would be the distribution of the means of every possible sample that might be chosen.

2. Use the standard deviation and mean of the sampling distribution to describe an interval that includes most of the sample means.

Sample response: Typically, most of the means of the different random samples of the same size chosen from a population will be within two standard deviations of the mean or the Mean +/-2 standard deviations.

### **Problem Set Sample Solutions**

| 1. | Which of the following will have the smallest standard deviation? Explain your reasoning.                                                                                             |                                                                                        |                                                      |                                                                                                                                             |  |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    | A sampling distribution of sample means for samples of size:                                                                                                                          |                                                                                        |                                                      |                                                                                                                                             |  |  |  |  |
|    | a. 15                                                                                                                                                                                 |                                                                                        | b. 25                                                | c. 100                                                                                                                                      |  |  |  |  |
|    | Possible answer: The largest sample size, 100, will have the smallest standard deviation because as the sample size increases, the variability in the sample mean decreases.          |                                                                                        |                                                      |                                                                                                                                             |  |  |  |  |
| 2. | In light of the distributions of sample means you have investigated in the lesson, comment on the statements below for random samples of size 20 chosen from the District SAT scores. |                                                                                        |                                                      |                                                                                                                                             |  |  |  |  |
|    | a.                                                                                                                                                                                    | I. Josh claimed he took a random sample of size 20 and had a sample mean score of 320. |                                                      |                                                                                                                                             |  |  |  |  |
|    |                                                                                                                                                                                       | Possible answer:<br>sample mean scol                                                   | A mean score of 320<br>re that low.                  | seems very unlikely. None of the samples we have investigated had a                                                                         |  |  |  |  |
|    | b.                                                                                                                                                                                    | Sarfina stated she                                                                     | ple of size 20 and had a sample mean of 520.         |                                                                                                                                             |  |  |  |  |
|    | Possible answer: This seems plausible for the simulated distributions of sample mean scores; 520 was h but still some of the random samples had mean scores greater than 520.         |                                                                                        |                                                      |                                                                                                                                             |  |  |  |  |
|    | c.                                                                                                                                                                                    | Ana announced th<br>three standard de                                                  | hat it would be pretty<br>eviations from the me      | y rare for the mean SAT score in a random sample to be more than<br>ean SAT score of 475.                                                   |  |  |  |  |
|    |                                                                                                                                                                                       | Possible answer:<br>means were usua<br>would not be usua                               | Given that the sampl<br>Ily within two standa<br>al. | le means in nearly all of the simulated distributions of the sample<br>rd deviations from the mean, Ana is correct. It could happen, but it |  |  |  |  |



Lesson 19: Date:

Sampling Variability in the Sample Mean 10/8/14



3.

#### ALGEBRA II

a. A random sample of size 50 produced a mean SAT score of 400.
Sample response: A mean score of 400 was less than any of the sample means in the simulated sampling distribution of sample means for samples of size 50, so this seems unlikely.
b. A random sample of size 10 produced a mean SAT score of 400.
Sample response: A mean score of 400 was within two standard deviations of the mean for random samples

Refer to your answers for Exercise 4, and then comment on each of the following:

of size 10, so it could have come from one of the samples.

c. For what sample sizes was a sample mean SAT score of 420 plausible? Explain your thinking.

Sample response: A sample mean of 420 occurred in the simulated sampling distributions for samples of size 5 and 10 but not at all in the simulated distributions for samples of size 20,40 and 50. So it seems like 420 was a plausible outcome for samples of size 5 and 10.

4. Explain the difference between the sample mean and the mean of the sampling distribution.

Possible answer: Each sample of SAT scores had a mean SAT score, which is the sample mean. Then all of those sample means formed a distribution of sample means, and we found the mean of that set, the mean of the sampling distribution of the sample mean – the mean of the means of the different samples.



Sampling Variability in the Sample Mean 10/8/14



