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Lesson 25:  Geometric Sequences and Exponential Growth 

and Decay 

 
Student Outcomes 

 Students use geometric sequences to model situations of exponential growth and decay. 

 Students write geometric sequences explicitly and recursively and translate between the two forms. 

 

Lesson Notes 

In Algebra I, students learned to interpret arithmetic sequences as linear functions and geometric sequences as 

exponential functions but both in simple contexts only.  In this lesson, which focuses on exponential growth and decay, 

students construct exponential functions to solve multi-step problems.  In the homework, they do the same with linear 

functions.  The lesson addresses focus standard F-BF.A.2, which asks students to write arithmetic and geometric 

sequences both recursively and with an explicit formula, use them to model situations, and translate between the two 

forms.  These skills are also needed to develop the financial formulas in Topic E. 

In general, a sequence is defined by a function 𝑓 from a domain of positive integers to a range of numbers that can be 

either integers or real numbers depending on the context, or other nonmathematical objects that satisfy the equation 

 𝑓(𝑛) = 𝑎𝑛.  When that function is expressed as an algebraic function of the index variable 𝑛, then that expression of the 

function is called the explicit form of the sequence (or explicit formula).  For example, the function 𝑓: 𝑁 → 𝑍, which 

satisfies 𝑓(𝑛) = 3𝑛 for all 𝑛 ≥ 0 is the explicit form for the sequence 3, 9, 27, 81, .... If the function is expressed in terms 

of the previous terms of the sequence and an initial value, then that expression of the function is called the recursive 

form of the sequence (or recursive formula).  The recursive formula for the sequence 3, 9, 27, 81, ... is 𝑎𝑛 = 3𝑎𝑛−1, with 

 𝑎0 = 3. 

It is important to note that sequences can be indexed by starting with any integer.  The convention in Algebra I was that 

the indices usually started at 1.  In Algebra II, we will often—but not always—start our indices at 0.  In this way, we start 

counting at the zero term, and count 0, 1, 2  … instead of 1, 2, 3 … .  However, we will not explicitly direct students to list 

the 3
rd

 or 10
th

 term in a sequence to avoid confusion. 

 

Classwork 

Opening Exercise (8 minutes) 

The opening exercise is essentially a reprise of the use in Algebra I of an exponential decay model with a geometric 

sequence. 

  

 

Comment [J1]: Is this intended to convey 
the manner in which sequences will be 
referenced as to avoid confusion in starting at 
0 or starting at 1? If so, it could be stated 
clearer.  The way it’s reading now is the 
singling out the third and tenth positions 
when that seems to be an irrelevant detail 
here (in other words, why single out the third 
and tenth, why not the first and second or the 
fourth and eighth—I assume because it’s not 
really relevant).  I also would not mix formats 
of ordinal numbers (here showing “third” 
spelled out and “10

th
” using superscript) 

unless there is a specific mathematical reason 
or intention for this mixing. 
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Opening Exercise 

Suppose a ball is dropped from an initial height 𝒉𝟎 and that each time it rebounds, its new height 

is 𝟔𝟎% of its previous height. 

a. What are the first four rebound heights 𝒉𝟏, 𝒉𝟐, 𝒉𝟑, and 𝒉𝟒 after being dropped from 

a height of 𝒉𝟎 = 𝟏𝟎 𝐟𝐭.? 

The rebound heights are 𝒉𝟏 = 𝟔 𝐟𝐭., 𝒉𝟐 = 𝟑. 𝟔 𝐟𝐭., 𝒉𝟑 = 𝟐. 𝟏𝟔 𝐟𝐭., and 𝒉𝟒 = 𝟏. 𝟐𝟗𝟔 𝐟𝐭.  

 

b. Suppose the initial height is 𝑨 𝐟𝐭.  What are the first four rebound heights?  Fill in the 

following table: 

Rebound Height (𝐟𝐭.) 

𝟏 𝟎. 𝟔𝑨 

𝟐 𝟎. 𝟑𝟔𝑨 

𝟑 𝟎. 𝟐𝟏𝟔𝑨 

𝟒 𝟎. 𝟏𝟐𝟗𝟔𝑨 

 

c. How is each term in the sequence related to the one that came before it? 

Each term is 𝟎. 𝟔 times the previous term. 

 

d. Suppose the initial height is 𝑨 𝐟𝐭. and that each rebound, rather than being 𝟔𝟎% of the previous height, is 𝒓 

times the previous height, where 𝟎 < 𝒓 < 𝟏.  What are the first four rebound heights?  What is the 𝒏th 

rebound height? 

The rebound heights are 𝒉𝟏 = 𝑨𝒓, 𝒉𝟐 = 𝑨𝒓𝟐, 𝒉𝟑 = 𝑨𝒓𝟑, and 𝒉𝟒 = 𝑨𝒓𝟒 𝒇𝒕.  The 𝒏th rebound height is  

𝒉𝒏 = 𝒂𝒓𝒏 𝐟𝐭. 

 

e. What kind of sequence is the sequence of rebound heights? 

The sequence of rebounds is geometric (geometrically decreasing). 

 

f. Suppose that we define a function 𝒇 with domain all real numbers so that 𝒇(𝟏) is the first rebound height, 

𝒇(𝟐) is the second rebound height, and continuing so that 𝒇(𝒌) is the 𝒌th rebound height for positive integers 

𝒌.  What type of function would you expect 𝒇 to be? 

Since each bounce has a rebound height of 𝒓 times the previous height, the function 𝒇 should be exponentially 

decreasing.  

 

  

Scaffolding: 

 Students who struggle in 
calculating the heights, 
even with a calculator, 
should have a much easier 
time getting the terms and 
seeing the pattern if the 
rebound is changed to 
50% instead of 60%. 

 Ask advanced students to 
develop a model without 
the scaffolded questions 
presented here. 
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g. On the coordinate plane below, sketch the height of the bouncing ball when 𝑨 = 𝟏𝟎 and  

𝒓 = 𝟎. 𝟔𝟎, assuming that the highest points occur at 𝒙 = 𝟏, 𝟐, 𝟑, 𝟒, …. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h. Does the exponential function 𝒇(𝒙) = 𝟏𝟎(𝟎. 𝟔𝟎)𝒙 for real numbers 𝒙 model the height of the bouncing ball?  

Explain how you know. 

No.  Exponential functions do not have the same 

behavior as a bouncing ball.  The graph of 𝒇 is 

the smooth curve that connects the points at the 

“top” of the rebounds, as shown in the graph at 

right. 

 

 

 

 

 

 

 

 

 

 

 

i. What does the function 𝒇(𝒏) = 𝟏𝟎(𝟎. 𝟔𝟎)𝒏 for integers 𝒏 ≥ 𝟎 model? 

The exponential function 𝒇(𝒏) = 𝟏𝟎(𝟎. 𝟔𝟎)𝒏 models the height of the rebounds for integer values of 𝒏.   
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Exercise 1 (4 minutes) 

While students are working on Exercise 1, circulate around the classroom to ensure student comprehension.  After 

students complete the exercise, debrief to make sure that everyone understands that the salary model is linear and not 

exponential. 

 

Exercises 

1.  

a. Jane works for a video game development company that pays her a starting salary of 

$𝟏𝟎𝟎 a day, and each day she works, she earns $𝟏𝟎𝟎 more than the day before.  How 

much does she earn on day 𝟓? 

On day 𝟓, she earns $𝟓𝟎𝟎. 

 

b. If you were to graph the growth of her salary for the first 𝟏𝟎 days she worked, what 

would the graph look like? 

The graph would be a set of points lying on a straight line. 

 

c. What kind of sequence is the sequence of Jane’s earnings each day? 

The sequence of her earnings is arithmetic (that is, the sequence is arithmetically increasing). 

 

Discussion (2 minutes) 

Pause here to ask students the following questions:   

 What have we learned so far?  What is the point of the previous two exercises? 

 There are two different types of sequences, arithmetic and geometric, that model different ways that 

quantities can increase or decrease. 

 What do you recall about geometric and arithmetic sequences from Algebra I? 

 To get from one term of an arithmetic sequence to the next, you add a number 𝑑, called the common 

difference.  To get from one term of a geometric sequence to the next you multiply by a number 𝑟, 

called the common quotient (or common ratio). 

For historical reasons, the number 𝑟 that we call the common quotient is often referred to as the common ratio, which is 

not fully in agreement with our definition of ratio.  Using the term is acceptable because its use is so standardized in 

mathematics. 

 

Exercise 2 (9 minutes) 

Students use a geometric sequence to model the following situation and develop closed and recursive formulas for the 

sequence.  Then they find an exponential model first using base 2 and then using base 𝑒 and solve for doubling time.  

Students should work in pairs on these exercises, using a calculator for calculations.  They should be introduced to 𝑃0 as 

the notation for the original number of bacteria (at time 𝑡 = 0) and also the first term of the sequence, which we refer 

to as the zero term.  Counting terms starting with 0 means that if we represent our sequence by a function 𝑓, then 

 𝑃𝑛 = 𝑓(𝑛) for integers 𝑛 ≥ 0. 

 

Scaffolding: 

 If students struggle with 
calculating the earnings or 
visualizing the graph, have 
them calculate the salary 
for the first five days and 
make a graph of those 
earnings. 
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This is an appropriate time to mention to students that we often use a continuous function to model a discrete 

phenomenon.  In this example, the function that we use to represent the bacteria population takes on non-integer 

values.  We need to interpret these function values according to the situation—it is not appropriate to say that the 

population consists of a non-integer number of bacteria at a certain time, even if the function value is non-integer.  In 

these cases, students should round their answers to an integer that makes sense in the context of the problem. 

 

2. A laboratory culture begins with 𝟏, 𝟎𝟎𝟎 bacteria at the beginning of the experiment, which 

we will denote by time 𝟎 hours.  By time 𝟐 hours, there were 𝟐, 𝟖𝟗𝟎 bacteria. 

a. If the number of bacteria is increasing by a common factor each hour, how many 

bacteria were there at time 𝟏 hour?  At time 𝟑 hours? 

If 𝑷𝟎 is the original population, the first three terms of the geometric sequence are 

𝑷𝟎, 𝑷𝟎𝒓, and 𝑷𝟎𝒓𝟐.  In this case, 𝑷𝟎 = 𝟏𝟎𝟎𝟎 and 𝑷𝟐 = 𝑷𝟎𝒓𝟐 = 𝟐𝟖𝟗𝟎, so 𝒓𝟐 = 𝟐. 𝟖𝟗 

 and 𝒓 = 𝟏. 𝟕.  Therefore, 𝑷𝟏 = 𝑷𝟎𝒓 = 𝟏𝟕𝟎𝟎 and 𝑷𝟑 = 𝑷𝟎𝒓𝟑 = 𝟐𝟖𝟗𝟎 ∙ 𝟏. 𝟕 = 𝟒𝟗𝟏𝟑. 

 

b. Find the explicit formula for term 𝑷𝒏 of the sequence in this case. 

𝑷𝒏 = 𝑷𝟎𝒓𝒏 = 𝟏𝟎𝟎𝟎(𝟏. 𝟕)𝒏 

 

c. How would you find term 𝑷𝒏+𝟏 if you know term 𝑷𝒏?  Write a recursive formula for 𝑷𝒏+𝟏 in terms of 𝑷𝒏. 

You would multiply the 𝒏th term by 𝒓, which in this case is 𝟏. 𝟕.  We have 𝑷𝒏+𝟏 = 𝟏. 𝟕 𝑷𝒏. 

 

d. If 𝑷𝟎 is the initial population, the growth of the population 𝑷𝒏 at time 𝒏 hours can be modeled by the 

sequence 𝑷𝒏 = 𝑷(𝒏), where 𝑷 is an exponential function with the following form:   

𝑷(𝒏) = 𝑷𝟎𝟐𝒌𝒏, where 𝒌 > 𝟎. 

Find the value of 𝒌 and write the function 𝑷 in this form.  Approximate 𝒌 to four decimal places. 

We know that 𝑷(𝒏) =  𝟏𝟎𝟎𝟎(𝟏. 𝟕)𝒏 and 𝟏. 𝟕 = 𝟐𝐥𝐨𝐠𝟐(𝟏.𝟕), with 𝒌 = 𝐥𝐨𝐠𝟐(𝟏. 𝟕) =
𝐥𝐨𝐠(𝟏.𝟕)

𝐥𝐨𝐠(𝟐)
 ≈ 𝟎. 𝟕𝟔𝟓𝟓.   

Thus, we can express 𝑷 in the form:  

𝑷(𝒏) = 𝟏𝟎𝟎𝟎(𝟐𝟎.𝟕𝟔𝟓𝟓𝒏). 

 

e. Use the function in part (d) to determine the value of 𝒕 when the population of bacteria has doubled. 

We need to solve 𝟐𝟎𝟎𝟎 = 𝟏𝟎𝟎𝟎(𝟐𝟎.𝟕𝟔𝟓𝟓𝒕), which happens when the exponent is 𝟏. 

𝟎. 𝟕𝟔𝟓𝟓𝒕 = 𝟏 

𝒕 =
𝟏

𝟎. 𝟕𝟔𝟓𝟓
 

𝒕 ≈ 𝟏. 𝟑𝟎𝟔 

This population doubles in roughly 𝟏. 𝟑𝟎𝟔 hours, which is about 𝟏 hour and 𝟏𝟖 minutes. 

 

f. If 𝑷𝟎 is the initial population, the growth of the population 𝑷 at time 𝒕 can be expressed in the following 

form:   

𝑷(𝒏) = 𝑷𝟎𝒆𝒌𝒏, where 𝒌 > 𝟎. 

Find the value of 𝒌, and write the function 𝑷 in this form.  Approximate 𝒌 to four decimal places. 

Substituting in the formula for 𝒕 = 𝟐, we get 𝟐𝟖𝟗𝟎 = 𝟏𝟎𝟎𝟎𝒆𝟐𝒌. Solving for 𝒌, we get 𝒌 = 𝐥𝐧(𝟏. 𝟕) ≈ 𝟎. 𝟓𝟑𝟎𝟔. 

Thus, we can express 𝑷 in the form: 

𝑷(𝒕) = 𝟏𝟎𝟎𝟎(𝒆𝟎.𝟓𝟑𝟎𝟔𝒕). 

Scaffolding: 

 Students may need the 
hint that in the Opening 
Exercise, they wrote the 
terms of a geometric 
sequence so they can 
begin with the first three 
terms of such a sequence 
and use it to find 𝑟. 
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g. Use the formula in part (d) to determine the value of 𝒕 when the population of bacteria has doubled. 

Substituting in the formula with 𝒌 = 𝟎. 𝟓𝟑𝟎𝟔, we get 𝟐𝟎𝟎𝟎 = 𝟏𝟎𝟎𝟎𝒆𝟎.𝟓𝟑𝟎𝟔𝒕.  Solving for 𝒕, we get  

𝒕 =
𝐥𝐧(𝟐)

𝟎.𝟓𝟑𝟎𝟔
≈ 𝟏. 𝟑𝟎𝟔, which is the same value we found in part (e).    

 

Discussion (4 minutes) 

Students should share their solutions to Exercise 2 with the rest of the class, giving particular attention to parts (b) and 

(c).  

Part (b) of Exercise 2 presents what is called the explicit formula (or closed form) for a geometric sequence, whereas part 

(c) introduces the idea of a recursive formula.  Students need to understand that given any two terms in a geometric (or 

arithmetic) sequence, they can derive the explicit formula.  In working with recursion, they should understand that it 

provides a way of defining a sequence given one or more initial terms by using the 𝑛
th

 term of the sequence to find the 

(𝑛 + 1)
st

 term (or, by using the (𝑛 − 1)
st

 term to find the 𝑛
th

 term). 

Discuss with students the distinction between the two functions:  

𝑃(𝑛) = 1000(20.7655𝑛) for integers 𝑛 ≥ 0, and 

𝑃(𝑡) = 1000(20.7655𝑡) for real numbers 𝑡 ≥ 0. 

In the first case, the function 𝑃 as a function of an integer 𝑛 represents the population at discrete times 𝑛 = 0, 1, 2, … , 

 while 𝑃 as a function of a real number 𝑡 represents the population at any time 𝑡 ≥ 0, regardless of whether that time is 

an integer.  If we graphed these two functions, the first graph would be the points (0, 𝑃(0)), (1, 𝑃(1)), (2, 𝑃(2)), etc., 

and the second graph would be the smooth curve drawn through the points of the first graph.  We can use either 

statement of the function to define a sequence 𝑃𝑛 = 𝑃(𝑛) for integers 𝑛.  This was discussed in Opening Exercise part 

(h), as the difference between the graph of the points at the top of the rebounds of the bouncing ball and the graph of 

the smooth curve through those points.  

Our work earlier in the module that extended the laws of exponents to the set of all real numbers applies here to extend 

a discretely defined function such as 𝑃(𝑛) = 1000(20.7655𝑛) for integers 𝑛 ≥ 0 to the continuously-defined 

function 𝑃(𝑡) = 1000(20.7655𝑡) for real numbers 𝑡 ≥ 0.  Then, we can solve exponential equations involving sequences 

using our logarithmic tools. 

Students may question why we could find two different exponential representations of the function 𝑃 in parts (d) and (f) 

of Exercise 2.  We can use the properties of exponents to express an exponential function in terms of any base.  In 

Lesson 6 earlier in the module, we saw that the functions 𝐻(𝑡) = 𝑎𝑒𝑡 for real numbers 𝑎 have rate of change equal to 1.  

For this reason, which is important in calculus and beyond, we usually prefer to use base 𝑒 for exponential functions. 

 

Exercises 3–4 (5 minutes) 

Students should work on these exercises in pairs.  They can take turns calculating terms in the sequences.  Circulate the 

room and observe students to call on to share their work with the class before proceeding to the next and final set of 

exercises. 

  

MP.3 
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3. The first term 𝒂𝟎 of a geometric sequence is −𝟓, and the common ratio 𝒓 is −𝟐. 

a. What are the terms 𝒂𝟎, 𝒂𝟏, and 𝒂𝟐? 

𝒂𝟎 = −𝟓 

𝒂𝟏 = 𝟏𝟎 

𝒂𝟐 = −𝟐𝟎 

 

b. Find a recursive formula for this sequence.  

The recursive formula is 𝒂𝒏+𝟏 = −𝟐𝒂𝒏, with 𝒂𝟎 =  −𝟓. 

 

c. Find an explicit formula for this sequence. 

The explicit formula is 𝒂𝒏 = −𝟓(−𝟐)𝒏, for 𝒏 ≥ 𝟎. 

 

d. What is term 𝒂𝟗? 

Using the explicit formula, we find:  𝒂𝟗 = (−𝟓) ∙ (−𝟐)𝟗 = 𝟐𝟓𝟔𝟎. 

 

e. What is term 𝒂𝟏𝟎? 

One solution is to use the explicit formula:  𝒂𝟏𝟎 = (−𝟓) ∙ (−𝟐)𝟏𝟎 = −𝟓𝟏𝟐𝟎. 

Another solution is to use the recursive formula:  𝒂𝟏𝟎 = 𝒂𝟗 ∙ (−𝟐) = −𝟓𝟏𝟐𝟎. 

 

4. Term 𝒂𝟒 of a geometric sequence is 𝟓. 𝟖𝟓𝟔𝟒, and term 𝒂𝟓 is −𝟔. 𝟒𝟒𝟐𝟎𝟒.  

a. What is the common ratio 𝒓? 

We have 𝒓 =
−𝟔.𝟒𝟒𝟐𝟎𝟒

𝟓.𝟖𝟓𝟔𝟒
= −𝟏. 𝟏.  The common ratio is −𝟏. 𝟏.   

 

b. What is term 𝒂𝟎? 

From the definition of a geometric sequence, 𝒂𝟒 = 𝒂𝟎𝒓𝟒 = 𝟓. 𝟖𝟓𝟔𝟒, so 𝒂𝟎 =
𝟓.𝟖𝟓𝟔𝟒

(−𝟏.𝟏)
𝟒   =

𝟓.𝟖𝟓𝟔𝟒
𝟏.𝟒𝟔𝟒𝟏

= 𝟒. 

 

c. Find a recursive formula for this sequence. 

The recursive formula is 𝒂𝒏+𝟏 = −𝟏. 𝟏(𝒂𝒏) with 𝒂𝟎 = 𝟒. 

 

d. Find an explicit formula for this sequence.  

The explicit formula is 𝒂𝒏 = 𝟒(−𝟏. 𝟏)𝒏, for 𝒏 ≥ 𝟎. 

 

Exercises 5–6 (4 minutes) 

This final set of exercises in the lesson attends to F-BF.A.2, and asks students to translate between explicit and recursive 

formulas for geometric sequences.  Students should continue to work in pairs on these exercises. 

 

5. The recursive formula for a geometric sequence is 𝒂𝒏+𝟏 = 𝟑. 𝟗𝟐(𝒂𝒏) with 𝒂𝟎 = 𝟒. 𝟎𝟓.  Find an explicit formula for 

this sequence. 

The common ratio is 𝟑. 𝟗𝟐, and the initial value is 𝟒. 𝟎𝟓, so the explicit formula is  

𝒂𝒏 = 𝟒. 𝟎𝟓(𝟑. 𝟗𝟐)𝒏 for 𝒏 ≥ 𝟎. 

Scaffolding: 

 Students may need the 
hint that in the Opening 
Exercise, they wrote the 
terms of a geometric 
sequence so they can 
begin with the first three 
terms of such a sequence 
and use it to find 𝑟. 

Scaffolding: 

 Students may need the 
hint that in the Opening 
Exercise, they wrote the 
terms of a geometric 
sequence so they can 
begin with the first three 
terms of such a sequence 
and use it to find 𝑟. 
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Lesson Summary 

ARITHMETIC SEQUENCE:  A sequence is called arithmetic if there is a real number 𝒅 such that each term in the sequence 

is the sum of the previous term and 𝒅.   

 Explicit formula:  Term 𝒂𝒏 of an arithmetic sequence with first term 𝒂𝟎 and common difference 𝒅 is given 

by 𝒂𝒏 = 𝒂𝟎 + 𝒏𝒅, for 𝒏 ≥ 𝟎.  

 Recursive formula:  Term 𝒂𝒏+𝟏 of an arithmetic sequence with first term 𝒂𝟎 and common difference 𝒅 is 

given by 𝒂𝒏+𝟏 = 𝒂𝒏 + 𝒅, for 𝒏 ≥ 𝟎. 

GEOMETRIC SEQUENCE:  A sequence is called geometric if there is a real number 𝒓 such that each term in the sequence 

is a product of the previous term and 𝒓.   

 Explicit formula:  Term 𝒂𝒏 of a geometric sequence with first term 𝒂𝟎 and common ratio 𝒓 is given by 

𝒂𝒏 = 𝒂𝟎𝒓𝒏, for 𝒏 ≥ 𝟎. 

 Recursive formula:  Term 𝒂𝒏+𝟏 of a geometric sequence with first term 𝒂𝟎 and common ratio 𝒓 is given 

by 𝒂𝒏+𝟏 = 𝒂𝒏𝒓. 

1.  

6. The explicit formula for a geometric sequence is 𝒂𝒏 = 𝟏𝟒𝟕(𝟐. 𝟏)𝟑𝒏.  Find a recursive formula for this sequence.  

First, we rewrite the sequence as 𝒂𝒏 = 𝟏𝟒𝟕(𝟐. 𝟏𝟑)𝒏 = 𝟏𝟒𝟕(𝟗. 𝟐𝟔𝟏)𝒏.  We then see that the common ratio is 𝟗. 𝟐𝟔𝟏, 

and the initial value is 𝟏𝟒𝟕, so the recursive formula is  

𝒂𝒏+𝟏 = (𝟗. 𝟐𝟔𝟏)𝒂𝒏 with 𝒂𝟎 = 𝟏𝟒𝟕. 

 

Closing (4 minutes) 

Debrief students by asking the following questions and taking answers as a class: 

 If we know that a situation can be described using a geometric series, how can we create the geometric series 

for that model?  How is the geometric series related to an exponential function with base 𝑒? 

 The terms of the geometric series are determined by letting 𝑃𝑛 = 𝑃(𝑛) for an exponential function  

𝑃(𝑛) = 𝑃0𝑒𝑘𝑛, where 𝑃0 is the initial amount, 𝑛 indicates the term of the series, and 𝑒𝑘 is the growth 

rate of the function.  Depending on the data given in the situation, we can use either the explicit 

formula or the recursive formula to find the common ratio 𝑟 = 𝑒𝑘 of the geometric sequence and its 

initial term 𝑃0.  

 Do we need to use an exponential function base 𝑒? 

 No.  We can choose any base that we want for an exponential function, but mathematicians often 

choose base 𝑒 for exponential and logarithm functions. 

Although arithmetic sequences are not emphasized in this lesson, they do make an appearance in the Problem Set.  For 

completeness, the lesson summary includes both kinds of sequences.  The two formulas and the function models for 

each type of sequence are summarized in the box below, which can be reproduced and posted in the classroom: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exit Ticket (5 minutes)  

 

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


 

 
  
  
 

 

    

 

 

NYS COMMON CORE MATHEMATICS CURRICULUM M3 Lesson 25 

ALGEBRA II 

Lesson 25: Geometric Sequences and Exponential Growth and Decay 
Date: 11/17/14 

 

410 

© 2014 Common Core, Inc. Some rights reserved. commoncore.org 
This work is licensed under a  
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.  

Name                                   Date                          

Lesson 25:  Geometric Sequences and Exponential Growth and 

Decay 

 
Exit Ticket 

 

1. Every year, Mikhail receives a 3% raise in his annual salary.  His starting annual salary was $40,000. 

a. Does a geometric or arithmetic sequence best model Mikhail’s salary in year 𝑛?  Explain how you know. 

 

 

 

 

 

b. Find a recursive formula for a sequence, 𝑆𝑛, which represents Mikhail’s salary in year 𝑛. 

 

 

 

 

 

2. Carmela’s annual salary in year 𝑛 can be modeled by the recursive sequence 𝐶𝑛+1 = 1.05 𝐶𝑛, where 𝐶0 = $75,000.  

a. What does the number 1.05 represent in the context of this problem? 

 

 

 

 

b. What does the number $75,000 represent in the context of this problem? 

 

 

 

 

c. Find an explicit formula for a sequence that represents Carmela’s salary. 
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Exit Ticket Sample Solutions 

 

1. Every year, Mikhail receives a 𝟑% raise in his annual salary.  His starting annual salary was $𝟒𝟎, 𝟎𝟎𝟎. 

a. Does a geometric or arithmetic sequence best model Mikhail’s salary in year 𝒏?  Explain how you know. 

Because Mikhail’s salary increases by a multiple of itself each year, a geometric series will be an appropriate 

model. 

 

b. Find a recursive formula for a sequence, 𝑺𝒏, which represents Mikhail’s salary in year 𝒏. 

Mikhail’s annual salary can be represented by the sequence 𝑺𝒏+𝟏 = 𝟏. 𝟎𝟑 𝑺𝒏 with 𝑺𝟎 = $𝟒𝟎, 𝟎𝟎𝟎. 

 

2. Carmela’s annual salary in year 𝒏 can be modeled by the recursive sequence 𝑪𝒏+𝟏 = 𝟏. 𝟎𝟓 𝑪𝒏, where 

 𝑪𝟎 = $𝟕𝟓, 𝟎𝟎𝟎. 

a. What does the number 𝟏. 𝟎𝟓 represent in the context of this problem? 

The 𝟏. 𝟎𝟓 is the growth rate of her salary with time; it indicates that she is receiving a 𝟓% raise each year. 

 

b. What does the number $𝟕𝟓, 𝟎𝟎𝟎 represent in the context of this problem? 

Carmela’s starting annual salary was $𝟕𝟓, 𝟎𝟎𝟎, before she earned any raises.  

 

c. Find an explicit formula for a sequence that represents Carmela’s salary. 

Carmela’s salary can be represented by the sequence 𝑪𝒏 = $𝟕𝟓, 𝟎𝟎𝟎 (𝟏. 𝟎𝟓)𝒏. 

 
 
Problem Set Sample Solutions 

 

1. Convert the following recursive formulas for sequences to explicit formulas. 

a. 𝒂𝒏+𝟏 = 𝟒. 𝟐 + 𝒂𝒏 with 𝒂𝟎 = 𝟏𝟐 

𝒂𝒏 = 𝟏𝟐 + 𝟒. 𝟐𝒏 for 𝒏 ≥ 𝟎 

 

b. 𝒂𝒏+𝟏 =  𝟒. 𝟐𝒂𝒏 with 𝒂𝟎 = 𝟏𝟐 

𝒂𝒏 = 𝟏𝟐(𝟒. 𝟐)𝒏 for 𝒏 ≥ 𝟎 

 

c. 𝒂𝒏+𝟏 =  √𝟓 𝒂𝒏 with 𝒂𝟎 = 𝟐 

𝒂𝒏 = 𝟐(√𝟓)
𝒏

 for 𝒏 ≥ 𝟎 

 

d. 𝒂𝒏+𝟏 =  √𝟓 + 𝒂𝒏 with 𝒂𝟎 = 𝟐 

𝒂𝒏 = 𝟐 + 𝒏√𝟓  for 𝒏 ≥ 𝟎 

 

e. 𝒂𝒏+𝟏  = 𝝅 𝒂𝒏 with 𝒂𝟎 = 𝝅 

𝒂𝒏 = 𝝅(𝝅)𝒏 = 𝝅𝒏+𝟏 for 𝒏 ≥ 𝟎 
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2. Convert the following explicit formulas for sequences to recursive formulas. 

a. 𝒂𝒏 =
𝟏
𝟓

(𝟑𝒏) for 𝒏 ≥ 𝟎   

𝒂𝒏+𝟏 =  𝟑 𝒂𝒏 with 𝒂𝟎 =
𝟏
𝟓

   

 

b. 𝒂𝒏 = 𝟏𝟔 − 𝟐𝒏 for 𝒏 ≥ 𝟎 

𝒂𝒏+𝟏 =  𝒂𝒏 − 𝟐  with 𝒂𝟎 = 𝟏𝟔 

 

c. 𝒂𝒏 = 𝟏𝟔 (
𝟏
𝟐

)
𝒏

 for 𝒏 ≥ 𝟎 

𝒂𝒏+𝟏 =
𝟏
𝟐

𝒂𝒏 with 𝒂𝟎 = 𝟏𝟔 

 

d. 𝒂𝒏 = 𝟕𝟏 −
𝟔
𝟕

𝒏 for 𝒏 ≥ 𝟎 

𝒂𝒏+𝟏 =  𝒂𝒏 −
𝟔
𝟕

 with 𝒂𝟎 = 𝟕𝟏 

 

e. 𝒂𝒏 = 𝟏𝟗𝟎(𝟏. 𝟎𝟑)𝒏  for 𝒏 ≥ 𝟎 

𝒂𝒏+𝟏 =  𝟏. 𝟎𝟑 𝒂𝒏 with 𝒂𝟎 = 𝟏𝟗𝟎 

 

3. If a geometric sequence has 𝒂𝟏 = 𝟐𝟓𝟔 and 𝒂𝟖 = 𝟓𝟏𝟐, find the exact value of the common ratio 𝒓.  

The recursive formula is 𝒂𝒏+𝟏 =  𝒂𝒏 ⋅ 𝒓 , so we have 

𝒂𝟖 = 𝒂𝟕(𝒓) 

= 𝒂𝟔(𝒓𝟐) 

= 𝒂𝟓(𝒓𝟑) 

⋮⋮= 𝒂𝟏(𝒓𝟕) 

𝟓𝟏𝟐 = 𝟐𝟓𝟔(𝒓𝟕) 

𝟐 = 𝒓𝟕 

𝒓 = √𝟐
𝟕

 . 

 

4. If a geometric sequence has 𝒂𝟐 = 𝟒𝟗𝟓 and 𝒂𝟔 = 𝟑𝟏𝟏, approximate the value of the common ratio 𝒓 to four decimal 

places. 

The recursive formula is 𝒂𝒏+𝟏 =  𝒂𝒏 ⋅ 𝒓, so we have 

𝒂𝟔 = 𝒂𝟓(𝒓) 

= 𝒂𝟒(𝒓𝟐) 

= 𝒂𝟑(𝒓𝟑) 

= 𝒂𝟐(𝒓𝟒) 

𝟑𝟏𝟏 = 𝟒𝟗𝟓(𝒓𝟒) 

𝒓𝟒 =
𝟑𝟏𝟏

𝟒𝟗𝟓
 

𝒓 = √
𝟑𝟏𝟏

𝟒𝟗𝟓

𝟒

≈ 𝟎. 𝟖𝟗𝟎𝟑 . 
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5. Find the difference between the terms 𝒂𝟏𝟎 of an arithmetic sequence and a geometric sequence, both of which 

begin at term 𝒂𝟎 and have 𝒂𝟐 = 𝟒 and 𝒂𝟒 = 𝟏𝟐. 

Arithmetic:  The explicit formula has the form 𝒂𝒏 = 𝒂𝟎 + 𝒏𝒅, so 𝒂𝟐 = 𝒂𝟎 + 𝟐𝒅 and 𝒂𝟒 = 𝒂𝟎 + 𝟒𝒅.  Then 

 𝒂𝟒 − 𝒂𝟐 = 𝟏𝟐 − 𝟒 = 𝟖 and 𝒂𝟒 − 𝒂𝟐 = (𝒂𝟎 + 𝟒𝒅) − (𝒂𝟎 + 𝟐𝒅), so that 𝟖 = 𝟐𝒅 and 𝒅 = 𝟒.  Since 𝒅 = 𝟒, we know 

that 𝒂𝟎 = 𝒂𝟐 − 𝟐𝒅 = 𝟒 − 𝟖 =  −𝟒.  So, the explicit formula for this arithmetic sequence is 𝒂𝒏 =  −𝟒 + 𝟒𝒏.  We then 

know that 𝒂𝟏𝟎 = −𝟒 + 𝟒𝟎 = 𝟑𝟔. 

Geometric:  The explicit formula has the form 𝒂𝒏 = 𝒂𝟎(𝒓𝒏), so 𝒂𝟐 = 𝒂𝟎(𝒓𝟐) and 𝒂𝟒 = 𝒂𝟎(𝒓𝟒), so 
𝒂𝟒

𝒂𝟐
𝒓𝟐 and 

 
𝒂𝟒

𝒂𝟐
=

𝟏𝟐

𝟒
= 𝟑.  Thus, 𝒓𝟐 = 𝟑, so 𝒓 = ±√𝟑.  Since 𝒓𝟐 = 𝟑, we have 𝒂𝟐 = 𝟒 = 𝒂𝟎(𝒓𝟐), so that 𝒂𝟎 =

𝟒
𝟑

.  Then the 

explicit formula for this geometric sequence is 𝒂𝒏 =
𝟒

𝟑
(±√𝟑)

𝒏
.  We then know that 

 𝒂𝟏𝟎 =
𝟒

𝟑
(±√𝟑)

𝟏𝟎
=

𝟒

𝟑
(𝟑𝟓) = 𝟒(𝟑𝟒) = 𝟑𝟐𝟒.   

Thus, the difference between the terms 𝒂𝟏𝟎 of these two sequences is 𝟑𝟐𝟒 − 𝟑𝟔 = 𝟐𝟖𝟖. 

 

6. Given the geometric series defined by the following values of 𝒂𝟎 and 𝒓, find the value of 𝒏 so that 𝒂𝒏 has the 

specified value. 

a. 𝒂𝟎 = 𝟔𝟒, 𝒓 =
𝟏
𝟐

, 𝒂𝒏 = 𝟐 

The explicit formula for this geometric series is 𝒂𝒏 =  𝟔𝟒 (
𝟏
𝟐

)
𝒏

 and 𝒂𝒏 = 𝟐.  

𝟐 = 𝟔𝟒 (
𝟏

𝟐
)

𝒏

 

𝟏

𝟑𝟐
= (

𝟏

𝟐
)

𝒏

 

(
𝟏

𝟐
)

𝟓

= (
𝟏

𝟐
)

𝒏

 

𝒏 = 𝟓 

Thus, 𝒂𝟓 = 𝟐. 

 

b. 𝒂𝟎 = 𝟏𝟑, 𝒓 = 𝟑, 𝒂𝒏 = 𝟖𝟓𝟐𝟗𝟑 

The explicit formula for this geometric series is 𝒂𝒏 = 𝟏𝟑(𝟑)𝒏, and we have 𝒂𝒏 =  𝟖𝟓𝟐𝟗𝟑. 

𝟏𝟑(𝟑)𝒏 = 𝟖𝟓𝟐𝟗𝟑 

𝟑𝒏 = 𝟔𝟓𝟔𝟏 

𝟑𝒏 = 𝟑𝟖 

𝒏 = 𝟖 

Thus, 𝒂𝟖 = 𝟖𝟓𝟐𝟗𝟑. 

 

c. 𝒂𝟎 = 𝟔. 𝟕, 𝒓 = 𝟏. 𝟗, 𝒂𝒏 = 𝟕𝟖𝟎𝟒. 𝟖 

The explicit formula for this geometric series is 𝒂𝒏 = 𝟔. 𝟕(𝟏. 𝟗)𝒏, and we have 𝒂𝒏 = 𝟕𝟖𝟎𝟒. 𝟖. 

𝟔. 𝟕(𝟏. 𝟗)𝒏 = 𝟕𝟖𝟎𝟒. 𝟖 

(𝟏. 𝟗)𝒏 = 𝟏𝟏𝟔𝟒. 𝟗 

𝒏 𝐥𝐨𝐠(𝟏. 𝟗) =  𝐥𝐨𝐠(𝟏𝟏𝟔𝟒. 𝟗) 

𝒏 =
𝐥𝐨𝐠(𝟏𝟏𝟔𝟒. 𝟗)

𝐥𝐨𝐠(𝟏. 𝟗)
= 𝟏𝟏 

Thus, 𝒂𝟏𝟏 = 𝟕𝟖𝟎𝟒. 𝟖. 
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d. 𝒂𝟎 = 𝟏𝟎𝟗𝟓𝟖, 𝒓 = 𝟎. 𝟕, 𝒂𝒏 = 𝟐𝟓. 𝟓 

The explicit formula for this geometric series is 𝒂𝒏 = 𝟏𝟎𝟗𝟓𝟖(𝟎. 𝟕)𝒏, and we have 𝒂𝒏 = 𝟐𝟓. 𝟓. 

𝟏𝟎𝟗𝟓𝟖(𝟎. 𝟕)𝒏 = 𝟐𝟓. 𝟓 

𝐥𝐨𝐠(𝟏𝟎𝟗𝟓𝟖) + 𝒏 𝐥𝐨𝐠(𝟎. 𝟕) = 𝐥𝐨𝐠(𝟐𝟓. 𝟓) 

𝒏 =
𝐥𝐨𝐠(𝟐𝟓. 𝟓) − 𝐥𝐨𝐠(𝟏𝟎𝟗𝟓𝟖)

𝐥𝐨𝐠(𝟎. 𝟕)
 

𝒏 = 𝟏𝟕 

Thus, 𝒂𝟏𝟕 = 𝟐𝟓. 𝟓. 

 

7. Jenny planted a sunflower seedling that started out 𝟓 𝐜𝐦 tall, and she finds that the average daily growth is 𝟑. 𝟓 𝐜𝐦. 

a. Find a recursive formula for the height of the sunflower plant on day 𝒏. 

𝒉𝒏+𝟏 =  𝟑. 𝟓 + 𝒉𝒏 with 𝒉𝟎 = 𝟓  

 

b. Find an explicit formula for the height of the sunflower plant on day 𝒏 ≥ 𝟎. 

𝒉𝒏 = 𝟓 + 𝟑. 𝟓𝒏 

 

8. Kevin modeled the height of his son (in inches) at age 𝒏 years for 𝒏 = 𝟐, 𝟑, … , 𝟖 by the sequence  

𝒉𝒏 = 𝟑𝟒 + 𝟑. 𝟐(𝒏 − 𝟐).  Interpret the meaning of the constants 𝟑𝟒 and 𝟑. 𝟐 in his model.   

At age 𝟐, Kevin’s son was 𝟑𝟒 𝐢𝐧. tall, and between the ages of 𝟐 and 𝟖 he grew at a rate of 𝟑. 𝟐 𝐢𝐧. per year.  

 

9. Astrid sells art prints through an online retailer.  She charges a flat rate per order for an order processing fee, sales 

tax, and the same price for each print.  The formula for the cost of buying 𝒏 prints is given by 𝑷𝒏 = 𝟒. 𝟓 + 𝟏𝟐. 𝟔 𝒏. 

a. Interpret the number 𝟒. 𝟓 in the context of this problem. 

The 𝟒. 𝟓 represents a $𝟒. 𝟓𝟎 order processing fee. 

 

b. Interpret the number 𝟏𝟐. 𝟔 in the context of this problem. 

The number 𝟏𝟐. 𝟔 represents the cost of each print, including the sales tax.  (MP.2) 

 

c. Find a recursive formula for the cost of buying 𝒏 prints. 

𝑷𝒏 =  𝟏𝟐. 𝟔 + 𝑷𝒏−𝟏 with 𝑷𝟏 = 𝟏𝟕. 𝟏𝟎 

(Notice that it makes no sense to have 𝑷𝟎 be the starting value, since that means you need to pay the 

processing fee when you do not place an order.) 

 

10. A bouncy ball rebounds to 𝟗𝟎% of the height of the preceding bounce.  Craig drops a bouncy ball from a height of 

𝟐𝟎 𝐟𝐭.  

a. Write out the sequence of the heights 𝒉𝟏, 𝒉𝟐, 𝒉𝟑, and 𝒉𝟒 of the first four bounces, counting the initial height 

as 𝒉𝟎 = 𝟐𝟎. 

𝒉𝟏 = 𝟏𝟖 
𝒉𝟐 = 𝟏𝟔. 𝟐 
𝒉𝟑 = 𝟏𝟒. 𝟓𝟖 
𝒉𝟒 = 𝟏𝟑. 𝟏𝟐𝟐 

 

 

MP.2 

MP.2 
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b. Write a recursive formula for the rebound height of a bouncy ball dropped from an initial height of 𝟐𝟎 𝐟𝐭. 

𝒉𝒏+𝟏 =  𝟎. 𝟗 𝒉𝒏 with 𝒉𝟎 = 𝟐𝟎 

 

c. Write an explicit formula for the rebound height of a bouncy ball dropped from an initial height of 𝟐𝟎 𝐟𝐭. 

𝒉𝒏 = 𝟐𝟎(𝟎. 𝟗)𝒏 for 𝒏 ≥ 𝟎 

 

d. How many bounces will it take until the rebound height is under 𝟔 𝐟𝐭.? 

𝟐𝟎(𝟎. 𝟗)𝒏 < 𝟔 

𝒏 𝐥𝐨𝐠(𝟎. 𝟗) <  𝐥𝐨𝐠(𝟔) − 𝐥𝐨𝐠(𝟐𝟎) 

𝒏 >
𝐥𝐨𝐠(𝟔) −  𝐥𝐨𝐠(𝟐𝟎)

𝐥𝐨𝐠(𝟎. 𝟗)
 

𝒏 > 𝟏𝟏. 𝟒𝟐 

So, it takes 𝟏𝟐 bounces for the bouncy ball to rebound under 𝟔 𝐟𝐭. 

 

e. Extension:  Find a formula for the minimum number of bounces needed for the rebound height to be under 

𝒚 𝐟𝐭., for a real number 𝟎 < 𝒚 < 𝟐𝟎. 

𝟐𝟎(𝟎. 𝟗)𝒏 < 𝒚 

𝒏 𝐥𝐨𝐠(𝟎. 𝟗) <  𝐥𝐨𝐠(𝒚) − 𝐥𝐨𝐠(𝟐𝟎) 

𝒏 >
𝐥𝐨𝐠(𝒚) −  𝐥𝐨𝐠(𝟐𝟎)

𝐥𝐨𝐠(𝟎. 𝟗)
 

Rounding this up to the next integer with the ceiling function, it takes ⌈
𝐥𝐨𝐠(𝒚)− 𝐥𝐨𝐠(𝟐𝟎)

𝐥𝐨𝐠(𝟎.𝟗)
⌉ bounces for the bouncy 

ball to rebound under 𝒚 𝐟𝐭.  

 

11. Show that when a quantity 𝒂𝟎 = 𝑨 is increased by 𝒙%, its new value is 𝒂𝟏 = 𝑨 (𝟏 +
𝒙

𝟏𝟎𝟎
).  If this quantity is again 

increased by 𝒙%, what is its new value 𝒂𝟐?  If the operation is performed 𝒏 times in succession, what is the final 

value of the quantity 𝒂𝒏?   

We know that 𝒙% of a number 𝑨 is represented by 
𝒙

𝟏𝟎𝟎
𝑨.  Thus, when 𝒂𝟎 = 𝑨 is increased by 𝒙%, the new quantity 

is  

𝒂𝟏 = 𝑨 +
𝒙

𝟏𝟎𝟎
𝑨 

= 𝑨 (𝟏 +
𝒙

𝟏𝟎𝟎
). 

If we increase it again by 𝒙%, we have  

𝒂𝟐 = 𝒂𝟏 +
𝒙

𝟏𝟎𝟎
𝒂𝟏 

= (𝟏 +
𝒙

𝟏𝟎𝟎
) 𝒂𝟏 

= (𝟏 +
𝒙

𝟏𝟎𝟎
) (𝟏 +

𝒙

𝟏𝟎𝟎
) 𝒂𝟎 

= (𝟏 +
𝒙

𝟏𝟎𝟎
)

𝟐

𝒂𝟎. 

If we repeat this operation 𝒏 times, we find that 

𝒂𝒏 = (𝟏 +
𝒙

𝟏𝟎𝟎
)

𝒏

𝒂𝟎. 
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12. When Eli and Daisy arrive at their cabin in the woods in the middle of winter, the internal temperature is 𝟒𝟎°𝐅.  

a. Eli wants to turn up the thermostat by 𝟐°𝐅 every 𝟏𝟓 minutes.  Find an explicit formula for the sequence that 

represents the thermostat settings using Eli’s plan. 

Let 𝒏 represent the number of 𝟏𝟓-minute increments.  Then, 𝑬(𝒏) = 𝟒𝟎 + 𝟐𝒏. 

 

b. Daisy wants to turn up the thermostat by 𝟒% every 𝟏𝟓 minutes.  Find an explicit formula for the sequence 

that represents the thermostat settings using Daisy’s plan. 

Let 𝒏 represent the number of 𝟏𝟓-minute increments.  Then, 𝑫(𝒏) = 𝟒𝟎(𝟏. 𝟎𝟒)𝒏. 

 

c. Which plan will get the thermostat to 𝟔𝟎°F most quickly? 

Making a table of values, we see that Eli’s plan will set the thermostat to 𝟔𝟎°𝐅 first.  

𝒏 Elapsed Time 𝑬(𝒏) 𝑫(𝒏) 

𝟎 𝟎 minutes 𝟒𝟎 𝟒𝟎. 𝟎𝟎 

𝟏 𝟏𝟓 minutes 𝟒𝟐 𝟒𝟏. 𝟔𝟎 

𝟐 𝟑𝟎 minutes 𝟒𝟒 𝟒𝟑. 𝟐𝟔 

𝟑 𝟒𝟓 minutes 𝟒𝟔 𝟒𝟓. 𝟎𝟎 

𝟒 𝟏 hour 𝟒𝟖 𝟒𝟔. 𝟕𝟗 

𝟓 𝟏 hour 𝟏𝟓 minutes 𝟓𝟎 𝟒𝟖. 𝟔𝟕 

𝟔 𝟏 hour 𝟑𝟎 minutes 𝟓𝟐 𝟓𝟎. 𝟔𝟏 

𝟕 𝟏 hour 𝟒𝟓 minutes 𝟓𝟒 𝟓𝟐. 𝟔𝟒 

𝟖 𝟐 hours 𝟓𝟔 𝟓𝟒. 𝟕𝟒 

𝟗 𝟐 hours 𝟏𝟓 minutes 𝟓𝟖 𝟓𝟔. 𝟗𝟑 

𝟏𝟎 𝟐 hours 𝟑𝟎 minutes 𝟔𝟎 𝟓𝟗. 𝟐𝟏 

 

d. Which plan will get the thermostat to 𝟕𝟐°𝐅 most quickly? 

Continuing the table of values from part (c), we see that Daisy’s plan will set the thermostat to 𝟕𝟐°𝐅 first. 

𝒏 Elapsed Time 𝑬(𝒏) 𝑫(𝒏) 

𝟏𝟏 𝟐 hours 𝟒𝟓 minutes 𝟔𝟐 𝟔𝟏. 𝟓𝟖 

𝟏𝟐 𝟑 hours  𝟔𝟒 𝟔𝟒. 𝟎𝟒 

𝟏𝟑 𝟑 hours 𝟏𝟓 minutes 𝟔𝟔 𝟔𝟔. 𝟔𝟎 

𝟏𝟒 𝟑 hours 𝟑𝟎 minutes 𝟔𝟖 𝟔𝟗. 𝟐𝟕 

𝟏𝟓 𝟑 hours 𝟒𝟓 minutes 𝟕𝟎 𝟕𝟐. 𝟎𝟒 

 

13. In nuclear fission, one neutron splits an atom causing the release of two other neutrons, each of which splits an 

atom and produces the release of two more neutrons, and so on. 

a. Write the first few terms of the sequence showing the numbers of atoms being split at each stage after a 

single atom splits.  Use 𝒂𝟎 = 𝟏. 

𝒂𝟎 = 𝟏, 𝒂𝟏 = 𝟐, 𝒂𝟐 = 𝟒, 𝒂𝟑 = 𝟖 

 

b. Find the explicit formula that represents your sequence in part (a). 

𝒂𝒏 = 𝟐𝒏 
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c. If the interval from one stage to the next is one-millionth of a second, write an expression for the number of 

atoms being split at the end of one second. 

At the end of one second 𝒏 = 𝟏, 𝟎𝟎𝟎, 𝟎𝟎𝟎, so 𝟐𝟏,𝟎𝟎𝟎,𝟎𝟎𝟎 atoms are being split. 

 

d. If the number from part (c) were written out, how many digits would it have? 

The number of digits in a number 𝒙 is given by rounding up 𝐥𝐨𝐠(𝒙) to the next largest integer; that is, by the 

ceiling of 𝐥𝐨𝐠(𝒙), ⌈𝐥𝐨𝐠(𝒙)⌉.  Thus, there are ⌈𝐥𝐨𝐠(𝟐𝟏,𝟎𝟎𝟎,𝟎𝟎𝟎)⌉ digits.   

Since 𝐥𝐨𝐠(𝟐𝟏,𝟎𝟎𝟎,𝟎𝟎𝟎) = 𝟏, 𝟎𝟎𝟎, 𝟎𝟎𝟎 𝐥𝐨𝐠(𝟐) ≈ 𝟑𝟎𝟏, 𝟎𝟑𝟎, there will be 𝟑𝟎𝟏, 𝟎𝟑𝟎 digits in the number 

𝟐𝟏,𝟎𝟎𝟎,𝟎𝟎𝟎. 
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