Lesson 12: Properties of Logarithms

Classwork

Opening Exercise

Use the approximation $log(2) \approx 0.3010$ to approximate the values of each of the following logarithmic expressions.

- a. log(20)
- b. log(0.2)
- c. $log(2^4)$

Exercises 1-10

For Exercises 1–6, explain why each statement below is a property of base-10 logarithms.

- 1. Property 1: $\log(1) = 0$.
- 2. Property 2: $\log(10) = 1$.
- 3. Property 3: For all real numbers r, $\log(10^r) = r$.
- 4. Property 4: For any x > 0, $10^{\log(x)} = x$.

ALGEBRA II

- 5. Property 5: For any positive real numbers x and y, $\log(x \cdot y) = \log(x) + \log(y)$. Hint: Use an exponent rule as well as Property 4.
- 6. Property 6: For any positive real number x and any real number r, $\log(x^r) = r \cdot \log(x)$. Hint: Again, use an exponent rule as well as Property 4.

- 7. Apply properties of logarithms to rewrite the following expressions as a single logarithm or number.
 - a. $\frac{1}{2}\log(25) + \log(4)$
 - b. $\frac{1}{3}\log(8) + \log(16)$
 - c. $3 \log(5) + \log(0.8)$
- 8. Apply properties of logarithms to rewrite each expression as a sum of terms involving numbers, $\log(x)$, and $\log(y)$.
 - a. $\log(3x^2y^5)$
 - b. $\log(\sqrt{x^7y^3})$

9. In mathematical terminology, logarithms are well defined because if X = Y, then $\log(X) = \log(Y)$ for X, Y > 0. This means that if you want to solve an equation involving exponents, you can apply a logarithm to both sides of the equation, just as you can take the square root of both sides when solving a quadratic equation. You do need to be careful not to take the logarithm of a negative number or zero.

Use the property stated above to solve the following equations.

a.
$$10^{10x} = 100$$

b.
$$10^{x-1} = \frac{1}{10^{x+1}}$$

c.
$$100^{2x} = 10^{3x-1}$$

10. Solve the following equations.

a.
$$10^x = 2^7$$

b.
$$10^{x^2+1} = 15$$

c.
$$4^x = 5^3$$

Lesson Summary

We have established the following properties for base-10 logarithms, where x and y are positive real numbers and r is any real number:

- 1. $\log(1) = 0$
- 2. $\log(10) = 1$
- 3. $\log(10^r) = r$
- 4. $10^{\log(x)} = x$
- 5. $\log(x \cdot y) = \log(x) + \log(y)$
- 6. $\log(x^r) = r \cdot \log(x)$

Additional properties not yet established are the following:

- 7. $\log\left(\frac{1}{x}\right) = -\log(x)$
- 8. $\log\left(\frac{x}{y}\right) = \log(x) \log(y)$

Also, logarithms are well defined, meaning that for X, Y > 0, if X = Y, then $\log(X) = \log(Y)$.

Problem Set

1. Use the approximate logarithm values below to estimate each of the following logarithms. Indicate which properties you used.

$$log(2) = 0.3010$$

$$log(3) = 0.4771$$

$$log(5) = 0.6990$$

$$log(7) = 0.8451$$

- a. log(6)
- b. log(15)
- c. log(12)
- d. $\log(10^7)$
- e. $\log\left(\frac{1}{5}\right)$
- f. $\log\left(\frac{3}{7}\right)$
- g. $\log(\sqrt[4]{2})$

- 2. Let $\log(X) = r$, $\log(Y) = s$, and $\log(Z) = t$. Express each of the following in terms of r, s, and t.
 - a. $\log\left(\frac{X}{V}\right)$
 - b. log(YZ)
 - c. $\log(X^r)$
 - d. $\log(\sqrt[3]{Z})$
 - e. $\log\left(\sqrt[4]{\frac{Y}{Z}}\right)$
 - f. $\log(XY^2Z^3)$
- 3. Use the properties of logarithms to rewrite each expression in an equivalent form containing a single logarithm.
 - a. $\log\left(\frac{13}{5}\right) + \log\left(\frac{5}{4}\right)$
 - b. $\log\left(\frac{5}{6}\right) \log\left(\frac{2}{3}\right)$
 - c. $\frac{1}{2}\log(16) + \log(3) + \log(\frac{1}{4})$
- 4. Use the properties of logarithms to rewrite each expression in an equivalent form containing a single logarithm.
 - a. $\log(\sqrt{x}) + \frac{1}{2}\log(\frac{1}{x}) + 2\log(x)$
 - b. $\log(\sqrt[5]{x}) + \log(\sqrt[5]{x^4})$
 - c. $\log(x) + 2\log(y) \frac{1}{2}\log(z)$
 - d. $\frac{1}{3} \left(\log(x) 3\log(y) + \log(z) \right)$
 - e. $2(\log(x) \log(3y)) + 3(\log(z) 2\log(x))$
- 5. Use properties of logarithms to rewrite the following expressions in an equivalent form containing only $\log(x)$, $\log(y)$, $\log(z)$, and numbers.
 - a. $\log\left(\frac{3x^2y^4}{\sqrt{z}}\right)$
 - b. $\log\left(\frac{42\sqrt[3]{xy^7}}{x^2z}\right)$
 - c. $\log\left(\frac{100x^2}{y^3}\right)$
 - d. $\log\left(\sqrt{\frac{x^3y^2}{10z}}\right)$
 - e. $\log\left(\frac{1}{10x^2z}\right)$
- 6. Express $\log \left(\frac{1}{x} \frac{1}{x+1} \right) + \left(\log \left(\frac{1}{x} \right) \log \left(\frac{1}{x+1} \right) \right)$ as a single logarithm for positive numbers x.
- 7. Show that $\log(x + \sqrt{x^2 1}) + \log(x \sqrt{x^2 1}) = 0$ for $x \ge 1$.

- 8. If $xy = 10^{3.67}$, find the value of $\log(x) + \log(y)$.
- 9. Solve the following exponential equations by taking the logarithm base 10 of both sides. Leave your answers stated in terms of logarithmic expressions.

a.
$$10^{x^2} = 320$$

b.
$$10^{\frac{x}{8}} = 300$$

c.
$$10^{3x} = 400$$

d.
$$5^{2x} = 200$$

e.
$$3^x = 7^{-3x+2}$$

10. Solve the following exponential equations.

a.
$$10^x = 3$$

b.
$$10^y = 30$$

c.
$$10^z = 300$$

- d. Use the properties of logarithms to justify why x, y, and z form an arithmetic sequence whose constant difference is 1.
- 11. Without using a calculator, explain why the solution to each equation must be a real number between 1 and 2.

a.
$$11^x = 12$$

b.
$$21^x = 30$$

c.
$$100^x = 2000$$

d.
$$\left(\frac{1}{11}\right)^x = 0.01$$

e.
$$\left(\frac{2}{3}\right)^x = \frac{1}{2}$$

f.
$$99^x = 9000$$

12. Express the exact solution to each equation as a base-10 logarithm. Use a calculator to approximate the solution to the nearest 1000th.

a.
$$11^x = 12$$

b.
$$21^x = 30$$

c.
$$100^x = 2000$$

d.
$$\left(\frac{1}{11}\right)^x = 0.01$$

e.
$$\left(\frac{2}{3}\right)^x = \frac{1}{2}$$

f.
$$99^x = 9000$$

13. Show that the value of x that satisfies the equation $10^x = 3 \cdot 10^n$ is $\log(3) + n$.

ALGEBRA II

- 14. Solve each equation. If there is no solution, explain why.
 - a. $3 \cdot 5^x = 21$
 - b. $10^{x-3} = 25$
 - c. $10^x + 10^{x+1} = 11$
 - d. $8 2^x = 10$
- 15. Solve the following equation for n: $A = P(1+r)^n$.
- 16. In this exercise, we will establish a formula for the logarithm of a sum. Let $L = \log(x + y)$, where x, y > 0.
 - Show $\log(x) + \log\left(1 + \frac{y}{x}\right) = L$. State as a property of logarithms after showing this is a true statement.
 - Use part (a) and the fact that log(100) = 2 to rewrite log(365) as a sum. b.
 - Rewrite 365 in scientific notation, and use properties of logarithms to express log(365) as a sum of an integer c. and a logarithm of a number between 0 and 10.
 - d. What do you notice about your answers to (b) and (c)?
 - Find two integers that are upper and lower estimates of log(365). e.

