Name \qquad Date \qquad

1. Use properties of exponents to explain why it makes sense to define $16^{\frac{1}{4}}$ as $\sqrt[4]{16}$.
2. Use properties of exponents to rewrite each expression as either an integer or as a quotient of integers $\frac{p}{q}$ to show the expression is a rational number.
a. $\sqrt[4]{2} \sqrt[4]{8}$
b. $\frac{\sqrt[3]{54}}{\sqrt[3]{2}}$
c. $16^{\frac{3}{2}} \cdot\left(\frac{1}{27}\right)^{\frac{2}{3}}$
3. Use properties of exponents to rewrite each expression with only positive, rational exponents. Then find the numerical value of each expression when $x=9, y=8$, and $z=16$. In each case, the expression evaluates to a rational number.
a. $\sqrt{\frac{x y^{2}}{\left(x^{3} z\right)^{\frac{1}{2}}}}$
b. $\sqrt[11]{y^{2} z^{4}}$
c. $x^{-\frac{3}{2}} y^{\frac{4}{3}} z^{-\frac{3}{4}}$
4. We can use finite approximations of the decimal expansion of $\pi=3.141519 \ldots$ to find an approximate value of the number 3^{π}.
a. Fill in the missing exponents in the following sequence of inequalities that represents the recursive process of finding the value of 3^{π}.

$$
\begin{aligned}
& 3^{3}<3^{\pi}<3^{4} \\
& 3^{3.1}<3^{\pi}<3^{3.2} \\
& 3^{3.14}<3^{\pi}<3^{3.15} \\
& 3^{(\quad)}<3^{\pi}<3^{(\quad)} \\
& 3^{(\quad)}<3^{\pi}<3^{(\quad)}
\end{aligned}
$$

b. Explain how this recursive process leads to better and better approximations of the number 3^{π}.
5. A scientist is studying the growth of a population of bacteria. At the beginning of her study, she has 800 bacteria. She notices that the population is quadrupling every hour.
a. What quantities, including units, need to be identified to further investigate the growth of this bacteria population?
b. The scientist recorded the following information in her notebook, but she forgot to label each row. Label each row to show what quantities, including appropriate units, are represented by the numbers in the table, and then complete the table.

	0	1	2	3	4
	8	32	128		

c. Write an explicit formula for the number of bacteria present after t hours.
d. Another scientist studying the same population notices that the population is doubling every half an hour. Complete the table, and write an explicit formula for the number of bacteria present after x half hours.

Time, t (hours)	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2	$\frac{5}{2}$	3
Time, x (half-hours)	0	1	2	3	4	5	6
Bacteria (hundreds)	8	16	32				

e. Find the time, in hours, when there will be 5,120,000 bacteria. Express your answer as a logarithmic expression.
f. A scientist calculated the average rate of change for the bacteria in the first three hours to be 168. Which units should the scientist use when reporting this number?
6. Solve each equation. Express your answer as a logarithm, and then approximate the solution to the nearest thousandth.
a. $3(10)^{-x}=\frac{1}{9}$
b. $362\left(10^{\frac{t}{12}}\right)=500$
c. $(2)^{3 x}=9$
d. $300 e^{0.4 t}=900$
7. Because atoms and molecules are very small, they are counted in units of moles, where 1 mole $=6.022 \times 10^{23}$. Concentration of molecules in a liquid is measured in units of moles per liter. The measure of the acidity of a liquid is called the pH of the liquid and is given by the formula

$$
\mathrm{pH}=-\log (H),
$$

where H is the concentration of hydrogen ions in units of moles per liter.
a. Water has a pH value of 7.0. How many hydrogen ions are in one liter of water?
b. If a liquid has a pH value larger than 7.0, does one liter of that liquid contain more or less hydrogen ions than one liter of water? Explain.
c. Suppose that liquid A is more acidic than liquid B , and their pH values differ by 1.2. What is the ratio of the concentration of hydrogen ions in liquid A to the concentration of hydrogen ions in liquid B ?
8. A social media site is experiencing rapid growth. The table below shows values of V, the total number of unique visitors in each month, t, for a 6-month period of time. The graph shows the average minutes per visit to the site, M, in each month, t, for the same 6-month period of time.

t, Month	1	2	3	4	5	6
$V(t)$, Number of Unique Visitors	418,000	608,000	$1,031,000$	$1,270,000$	$2,023,000$	$3,295,000$

a. Between which two months did the site experience the most growth in total unique visitors? What is the average rate of change over this time interval?
b. Compute the value of $\frac{V(6)-V(1)}{6-1}$, and explain its meaning in this situation.
c. Between which two months did the average length of a visit change by the least amount? Estimate the average rate of change over this time interval.
d. Estimate the value of $\frac{M(3)-M(2)}{3-2}$ from the graph of M, and explain its meaning in this situation.
e. Based on the patterns they see in the table, the company predicts that the number of unique visitors will double each month after the sixth month. If growth continues at this pace, when will the number of unique visitors reach 1 billion?

$\left.\left.\begin{array}{|c|c|l|l|l|l|}\hline & & & \begin{array}{l}\text { the expressions without } \\ \text { significant errors for the } \\ \text { given values of the } \\ \text { variable. } \\ \text { Student work indicates } \\ \text { difficulty using proper } \\ \text { notation. }\end{array} & \begin{array}{l}\text { properties and } \\ \text { definitions, and student } \\ \text { uses proper notation. } \\ \text { OR }\end{array} & \begin{array}{l}\text { Student correctly } \\ \text { Studentions show } \\ \text { rewrites and evaluates } \\ \text { the expressions for all } \\ \text { three parts but shows }\end{array} \\ \text { demonstrate evidence } \\ \text { of understanding the } \\ \text { properties and } \\ \text { definitions, and student } \\ \text { uses proper notation. }\end{array}\right] \begin{array}{l}\text { little or no work to } \\ \text { support reasoning. }\end{array}\right]$

				$f(t)=512,000 \text { and }$ solves it correctly using a graphical or numerical approach.	
	$\begin{gathered} f \\ \text { N-Q.A. } 2 \end{gathered}$	Student makes little or no attempt to answer the question. Work shown is off-task.	Student provides units that agree with the model used in part (c) but explanation is missing.	Student identifies units that do not agree with the model used in part (c). Explanation is otherwise correct.	Student clearly identifies the units and explains the answer. Units agree with the model student created in part (c).
6	$\begin{gathered} \text { a-d } \\ \text { F-LE.A. } 4 \end{gathered}$	Student fails to correctly solve any equations using logarithms, showing incomplete and incorrect work.	Student correctly solves two equations but shows little or no work and fails to provide the exact or estimated answer. OR Student correctly solves one or two equations using logarithms. Work shown indicates major mathematical errors.	Student correctly solves four equations using logarithms but may not express solutions as both logarithms and estimated to three decimal places. OR Student correctly solves three of four equations. Work is largely correct with only one or two minor errors.	Student correctly solves four equations using logarithms. Work shown uses proper notation, and solutions are expressed exactly as logarithms estimated to three decimal places.
7	a A-CED.A. 1	Student makes little or no attempt to write and solve an equation to answer the question. Work shown contains several significant errors.	Student writes an equation equivalent to $-7=\log (H)$ but makes significant mathematical errors in solving it. Student does not relate the solution back to the question that was asked.	Student writes and solves an equation equivalent to the equation $-7=\log (H)$, but the solution contains minor errors, either in solving the equation or answering the question.	Student writes and solves an equation equivalent to the equation $7=-\log (H)$ and uses the solution to answer the question correctly.
	b $\text { N-Q.A. } 2$	Student solution is inaccurate and incomplete, showing student had significant difficulty thinking about the quantities in this problem.	Student is not able to correctly interpret the meaning of the pH values when compared to the pH of water. Student explanation gives evidence of partially correct thinking about the quantities in this problem.	Student uses the pH of water to correctly interpret the meaning of pH values more or less than 7.0 in the context of this situation. Student explanation makes sense for the most part but could include more detail or may contain minor vocabulary or notation errors.	Student uses the pH of water to correctly interpret the meaning of pH values more or less than 7.0 in the context of this situation. Student explanation clearly conveys correct thinking and uses proper vocabulary and notation.

$\left.\begin{array}{|c|c|l|l|l|l|}\hline \text { C } & \begin{array}{l}\text { Student makes little or } \\ \text { no attempt to write and } \\ \text { solve an equation. } \\ \text { Student makes little or } \\ \text { no attempt to relate } \\ \text { work to the context of } \\ \text { the situation. }\end{array} & \begin{array}{l}\text { Student does not write } \\ \text { a correct equation but } \\ \text { attempts to solve the } \\ \text { problem. Student work } \\ \text { and explanations show } \\ \text { some evidence of } \\ \text { correct thinking about } \\ \text { the situation but } \\ \text { contains some major } \\ \text { mathematical errors. }\end{array} & \begin{array}{l}\text { Student correctly writes } \\ \text { an equation with a } \\ \text { solution that can be } \\ \text { used to answer the } \\ \text { question. Student } \\ \text { attempts to solve the } \\ \text { equation. Student work } \\ \text { and explanations may } \\ \text { contain minor } \\ \text { mathematical errors. }\end{array} & \begin{array}{l}\text { Student correctly writes } \\ \text { an equation with a } \\ \text { solution that can be } \\ \text { used to answer the }\end{array} \\ \text { question. Student } \\ \text { solves the equation } \\ \text { correctly. Student work } \\ \text { and explanations clearly } \\ \text { show correct thinking, } \\ \text { with the solution } \\ \text { related back to the }\end{array}\right\}$

Name \qquad Date \qquad

1. Use properties of exponents to explain why it makes sense to define $16^{\frac{1}{4}}$ as $\sqrt[4]{16}$.

We know that

$$
\left(16^{\frac{1}{4}}\right)^{4}=16^{\frac{1}{4}} \cdot 16^{\frac{1}{4}} \cdot 16^{\frac{1}{4}} \cdot 16^{\frac{1}{4}}=16^{\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}}=16^{1}=16
$$

and $2^{4}=16$.

Since there is only one positive real number whose fourth power is 16 , and that is $\sqrt[4]{16}=2$, it makes sense to define $16^{\frac{1}{4}}=\sqrt[4]{16}$.
2. Use properties of exponents to rewrite each expression as either an integer or as a quotient of integers $\frac{p}{q}$ to show the expression is a rational number.
a. $\sqrt[4]{2} \sqrt[4]{8}$

$$
\sqrt[4]{2} \sqrt[4]{8}=2^{\frac{1}{4}} \cdot 8^{\frac{1}{4}}=2^{\frac{1}{4}} \cdot\left(2^{3}\right)^{\frac{1}{4}}=2^{\frac{1}{4}} \cdot 2^{\frac{3}{4}}=2^{\frac{1}{4}+\frac{3}{4}}=2^{1}
$$

Thus, $\sqrt[4]{2} \sqrt[4]{8}=2$ is a rational number.
b. $\frac{\sqrt[3]{54}}{\sqrt[3]{2}}$

$$
\frac{\sqrt[3]{54}}{\sqrt[3]{2}}=\frac{\left(54^{\frac{1}{3}}\right)}{2^{\frac{1}{3}}}=\frac{(2 \cdot 27)^{\frac{1}{3}}}{2^{\frac{1}{3}}}=\frac{2^{\frac{1}{3}} \cdot 27^{\frac{1}{3}}}{2^{\frac{1}{3}}}=27^{\frac{1}{3}}=3
$$

Thus, $\sqrt[{\sqrt[3]{54}}]{\sqrt[3]{2}}=3$ is a rational number.
c. $16^{\frac{3}{2}} \cdot\left(\frac{1}{27}\right)^{\frac{2}{3}}$

$$
16^{\frac{3}{2}} \cdot\left(\frac{1}{27}\right)^{\frac{2}{3}}=\left(16^{\frac{1}{2}}\right)^{3} \cdot\left(\frac{1}{\left(27^{\frac{1}{3}}\right)^{2}}\right)=4^{3} \cdot \frac{1}{3^{2}}=\frac{64}{9}
$$

Thus, $16^{\frac{3}{2}} \cdot\left(\frac{1}{27}\right)^{\frac{2}{3}}=\frac{64}{9}$ is a rational number.
3. Use properties of exponents to rewrite each expression with only positive, rational exponents. Then find the numerical value of each expression when $x=9, y=8$, and $z=16$. In each case, the expression evaluates to a rational number.
a. $\sqrt{\frac{x y^{2}}{x^{3} z^{\frac{1}{2}}}}$

$$
\sqrt{\frac{x y^{2}}{x^{3} z^{\frac{1}{2}}}}=\left(\frac{x \cdot y^{2}}{x^{3} z^{\frac{1}{2}}}\right)^{\frac{1}{2}}=\left(\frac{y^{2}}{x^{2} z^{\frac{1}{2}}}\right)^{\frac{1}{2}}=\frac{y}{x z^{\frac{1}{4}}}
$$

When $x=9, y=8$, and $z=16$, we have

$$
\sqrt{\frac{x y^{2}}{x^{3} z^{\frac{1}{2}}}}=\frac{8}{916^{\frac{1}{4}}}=\frac{8}{9 \cdot 2}=\frac{4}{9} .
$$

b. $\sqrt[11]{y^{2} z^{4}}$

$$
\sqrt[11]{y^{2} z^{4}}=\left(y^{2} z^{4}\right)^{\frac{1}{11}}=y^{\frac{2}{11}} z^{\frac{4}{11}}
$$

When $y=8$ and $z=16$, we have

$$
\sqrt[11]{y^{2} z^{4}}=8^{\frac{2}{11}} \frac{4}{\frac{4}{11}}=\left(2^{3}\right)^{\frac{2}{11}} \cdot\left(2^{4}\right)^{\frac{4}{11}}=2^{\frac{6}{11}} \cdot 2^{\frac{16}{11}}=2^{\frac{22}{11}}=2^{2}=4 .
$$

c. $x^{-\frac{3}{2} y^{\frac{4}{3}} Z^{-\frac{3}{4}}}$

$$
x^{-\frac{3}{2}} y^{\frac{4}{3}} z^{-\frac{3}{4}}=\frac{y^{\frac{4}{3}}}{x^{\frac{3}{2}} \cdot z^{\frac{3}{4}}}
$$

When $x=9, y=8$, and $z=16$, we have

$$
x^{-\frac{3}{2}} y^{\frac{4}{3}} z^{-\frac{3}{4}}=\frac{8^{\frac{4}{3}}}{9^{\frac{3}{2}} \cdot 16^{\frac{3}{4}}}=\frac{\left(2^{3}\right)^{\frac{4}{3}}}{\left(3^{2}\right)^{\frac{3}{2}} \cdot\left(2^{4}\right)^{\frac{3}{4}}}=\frac{2^{4}}{3^{3} \cdot 2^{3}}=\frac{2}{3^{3}}=\frac{2}{27}
$$

4. We can use finite approximations of the decimal expansion of $\pi=3.141519 \ldots$ to find an approximate value of the number 3^{π}.
a. Fill in the missing exponents in the following sequence of inequalities.

$$
\begin{aligned}
3^{3} & <3^{\pi}<3^{4} \\
3^{3.1} & <3^{\pi}<3^{3.2} \\
3^{3.14} & <3^{\pi}<3^{3.15} \\
3^{(3.141)} & <3^{\pi}<3^{(3.142)} \\
3^{(3.1415)} & <3^{\pi}<3^{(3.1416)}
\end{aligned}
$$

b. Explain how this recursive process leads to better and better approximations of the number 3^{π}.

We can get better and better approximations of π by squeezing it between rational over and under estimates that use more and more digits of its decimal expansion.

$$
\begin{gathered}
3<\pi<4 \\
3.1<\pi<3.2 \\
3.14<\pi<3.15
\end{gathered}
$$

Then, we can estimate 3^{π} by squeezing it between expressions with rational exponents. Because we know how to calculate a number such as $3^{3.14}=3^{3} \cdot 3^{0.14}=27\left(\sqrt[100]{3^{14}}\right)$, we have a method for calculating the over and under estimates of 3^{π}.

Because $3<\pi<4$, we have $3^{3}<3^{\pi}<3^{4}$. Thus, $27<3^{\pi}<81$.
Because $3.1<\pi<3.2$, we have $3^{3.1}<3^{\pi}<3^{3.2}$. Thus, $30.1353<3^{\pi}<33.6347$.
Because $3.14<\pi<3.15$, we have $3^{3.14}<3^{\pi}<3^{3.15}$. Thus, $31.4891<3^{\pi}<31.8370$. Continuing this process, we can approximate 3^{π} as closely as we want by starting with more and more digits of π in the exponent.
5. A scientist is studying the growth of a population of bacteria. At the beginning of her study, she has 800 bacteria. She notices that the population is quadrupling every hour.
a. What quantities, including units, need to be identified to further investigate the growth of this bacteria population?

We need to have the initial population, P_{0}, in either units of single bacteria or hundreds of bacteria, the time, t, in hours, and the current population, $P(t)$ at time t, in the same units as the initial population P_{0}.
b. The scientist recorded the following information in her notebook, but she forgot to label each row. Label each row to show what quantities, including appropriate units, are represented by the numbers in the table, and then complete the table.

time, t (hours)	0	1	2	3	4
Population, $P(t)$ (hundreds)	8	32	128	512	2048

c. Write an explicit formula for the number of bacteria present after t hours.

After t hours, there are $P(t)=8\left(4^{t}\right)$ hundred bacteria present.
(It is also acceptable to model this population by $P(t)=800\left(4^{t}\right)$ single bacteria.)
d. Another scientist studying the same population notices that the population is doubling every half an hour. Complete the table, and write an explicit formula for the number of bacteria present after x half hours.

Time, t (hours)	0	$\frac{1}{2}$	1	$\frac{3}{2}$	2	$\frac{5}{2}$	3
Time, x (half-hours)	0	1	2	3	4	5	6
Bacteria (hundreds)	8	16	32	64	128	256	512

After x half-hours, there are $Q(x)=8\left(2^{x}\right)$ hundred bacteria present.
(It is also acceptable to model this population by $Q(x)=800\left(2^{x}\right)$ single bacteria.)
e. Find the time, in hours, when there will be 5,120,000 bacteria. Express your answer as a logarithmic expression.

Students may choose to use the base-2 formula but will need to adjust the value of x, which counts half-hours, to t, which counts full hours, to correctly answer the question. Also, note that $5,120,000$ is 51,200 hundred bacteria, so if students modeled the population using single bacteria instead of hundreds, they should solve $800\left(4^{t}\right)=5,120,000$. Students may also solve this equation using the base -4 logarithm or base-2 logarithm, giving an equivalent solution that looks a little different..

$$
\begin{aligned}
& 8\left(4^{t}\right)=51200 \\
& 4^{t}=6400 \\
& t \log (4)=\log (6400) \\
& t=\frac{\log (6400)}{\log (4)}
\end{aligned}
$$

f. A scientist calculated the average rate of change for the bacteria in the first three hours to be 168. Which units should the scientist use when reporting this number? Explain how you know.

The average rate of change over the first three hours is given by the formula $\frac{P(3)-P(O)}{3-0}$, which is a quotient of the number of bacteria in hundreds per hour. Thus, the unit should be reported as hundreds of bacteria per hour. Note that if students had modeled the population using single bacteria instead of hundreds, they should answer that the units are in bacteria per hour.
6. Solve each equation. Express your answer as a logarithm, and then approximate the solution to the nearest thousandth.
a. $3(10)^{-x}=\frac{1}{9}$

$$
\begin{aligned}
& 3\left(10^{-x}\right)=\frac{1}{9} \\
& \frac{1}{10^{x}}=\frac{1}{27} \\
& 10^{x}=27 \\
& x=\log (27) \\
& x \approx 1.431
\end{aligned}
$$

b. $362\left(10^{\frac{t}{12}}\right)=500$

$$
\begin{aligned}
& 362\left(10^{\frac{t}{12}}\right)=500 \\
& 10^{\frac{t}{12}}=\frac{500}{362} \\
& \frac{t}{12}=\log \left(\frac{500}{362}\right) \\
& t \approx 1.683
\end{aligned}
$$

c. $(2)^{3 x}=9$

$$
\begin{aligned}
& 2^{3 x}=9 \\
& \log _{2}\left(2^{3 x}\right)=\log _{2}(9) \\
& 3 x=\log _{2}(9) \\
& x=\frac{1}{3} \log _{2}(9)=\frac{1}{3} \frac{\log (9)}{\log (2)} \\
& x \approx 1.057
\end{aligned}
$$

d. $300 e^{0.4 t}=900$

$$
\begin{aligned}
& 300 e^{0.4 t}=900 \\
& e^{0.4 t}=3 \\
& \ln \left(e^{0.4 t}\right)=\ln (3) \\
& 0.4 t=\ln (3) \\
& t=2.5 \ln (3) \\
& t \approx 2.747
\end{aligned}
$$

7. Because atoms and molecules are very small, they are counted in units of moles, where 1 mole $=6.022 \times 10^{23}$ molecules. Concentration of molecules in a liquid is measured in units of moles per liter. The measure of the acidity of a liquid is called the pH of the liquid and is given by the formula

$$
\mathrm{pH}=-\log (H)
$$

where H is the concentration of hydrogen ions in units of moles per liter.
a. Water has a pH value of 7.0. How many hydrogen ions are in one liter of water?

$$
\begin{aligned}
& 7=-\log (H) \\
& -7=\log (H) \\
& H=10^{-7}
\end{aligned}
$$

Thus, there are approximately 10^{-7} moles of hydrogen in one liter of water. If we multiply this by 6.022×10^{23} ions per mole, we find that there are 6.022×10^{16} hydrogen ions.
b. If a liquid has a pH value larger than 7.0 , does one liter of that liquid contain more or fewer hydrogen ions than one liter of water? Explain.

A liquid with a pH value larger than 7.0 will contain fewer hydrogen ions than one liter of water because $H=\frac{1}{10^{p H}}$ and when the pH is larger than 7.0, the value of H will become smaller because the quantities H and 10^{pH} are inversely proportional to one another.
c. Suppose that liquid A is more acidic than liquid B, and their pH values differ by 1.2. What is the ratio of the concentration of hydrogen ions in liquid A to the concentration of hydrogen ions in liquid B ?
Let H_{A} be the concentration of hydrogen ions in liquid A, and let H_{B} be the concentration of hydrogen ions in liquid B. Then, the difference of the $p H$ values is $-\log \left(H_{B}\right)-\left(-\log \left(H_{A}\right)\right)=1.2$. Solve this equation for $\frac{H_{A}}{H_{B}}$, the requested ratio.

$$
\begin{aligned}
& -\log \left(H_{B}\right)+\log \left(H_{A}\right)=1.2 \\
& \log \left(\frac{H_{A}}{H_{B}}\right)=1.2 \\
& \frac{H_{A}}{H_{B}}=10^{1.2} \approx 15.85
\end{aligned}
$$

Liquid A contains approximately 16 times as many hydrogen ions as liquid B.
8. A social media site is experiencing rapid growth. The table below shows values of V, and the total number of unique visitors in each month, t, for a 6-month period of time. The graph shows the average minutes per visit to the site, M, in each month, t, for the same 6-month period of time.

t, Month	1	2	3	4	5	6
$V(t)$, Number of Unique Visitors	418,000	608,000	$1,031,000$	$1,270,000$	$2,023,000$	$3,295,000$

a. Between which two months did the site experience the most growth in total unique visitors? What is the average rate of change over this time interval?

$$
\begin{array}{lll}
V(2)-V(1)=190,000 & V(3)-V(2)=423,000 & V(4)-V(3)=239,000 \\
V(5)-V(4)=753,000 & V(6)-V(5)=1,272,000 &
\end{array}
$$

The largest growth in the number of visitors occurs between months 5 and 6 .
b. Compute the value of $\frac{V(6)-V(1)}{6-1}$, and explain its meaning in this situation.

$$
\frac{V(6)-V(1)}{6-1}=\frac{3,295,000-418,000}{5}=575,400
$$

This means that the average monthly growth of visitors to the site between months 1 and 6 is 575,400 visitors per month.
c. Between which two months did the average length of a visit change by the least amount? Estimate the average rate of change over this time interval.

The two neighboring points that have the closest y-values are in months 5 and 6 . Estimating values $M(6) \approx 47.5$ and $M(5) \approx 46$ from the graph, we see that the average rate of change over this interval is $\frac{M(6)-M(5)}{6-5}=\frac{47.5-46}{1}=1.5$ minutes per visitor per month. (Students may read different values from the graph.)
d. Estimate the value of $\frac{M(3)-M(2)}{3-2}$ from the graph of M, and explain its meaning in this situation.

Estimating values $M(3) \approx 37$ and $M(2) \approx 28$ from the graph, we have $\frac{M(3)-M(2)}{3-2}=\frac{37-28}{1}=9$, meaning that on average, each visit to the website increased by 9 minutes between months 2 and 3 .
e. Based on the patterns they see in the table, the company predicts that the number of unique visitors will double each month after the sixth month. If growth continues at this pace, when will the number of unique visitors reach 1 billion?

$$
\begin{aligned}
& 3,295,000(2)^{t}=1,000,000,000 \\
& 2^{t}=303.49 \\
& \log \left(2^{t}\right)=\log (303.49) \\
& t \log (2)=\log (303.49) \\
& t=\frac{\log (303.49)}{\log (2)} \\
& t \approx 8.25
\end{aligned}
$$

The number of unique visitors will reach 1 billion after 8.25 additional months have passed.

