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Lesson 24:  Solving Exponential Equations

Classwork
Opening Exercise
In Lesson 7, we modeled a population of bacteria that doubled every day by the function , where  was the time in days.  We wanted to know the value of  when there were  bacteria.  Since we didn’t yet know about logarithms, we approximated the value of  numerically and we found that  at approximately  days.
Use your knowledge of logarithms to find an exact value for  when , and then use your calculator to approximate that value to four decimal places.




Exercises
Fiona modeled her data from the bean-flipping experiment in Lesson 23 by the function , and Gregor modeled his data with the function .
Without doing any calculating, determine which student, Fiona or Gregor, accumulated  beans first. Explain how you know. 







Using Fiona’s model …
How many trials would be needed for her to accumulate  beans?









How many trials would be needed for her to accumulate  beans?










Using Gregor’s model …
How many trials would be needed for him to accumulate beans?












How many trials would be needed for him to accumulate  beans?








.

Was your prediction in part (a) correct?  If not, what was the error in your reasoning?


Fiona wants to know when her model  predicts accumulations of , , and  beans, but she wants to find a way to figure it out without doing the same calculation three times.
Let the positive number  represent the number of beans that Fiona wants to have.  Then solve the equation  for 












Your answer to part (a) can be written as a function  of the number of beans , where .  Explain what this function represents.  





When does Fiona’s model predict that she will accumulate …
 beans?





 beans?






 beans?





Gregor states that the function  that he found to model his bean-flipping data can be written in the form 
.  Since , he is using  as his new model.
Is Gregor correct?  Is  an equivalent form of his original function?  Use properties of exponents and logarithms to explain how you know. 








Gregor also wants to find a function that will help him to calculate the number of trials his function  predicts it will take to accumulate , , and  beans.  Let the positive number  represent the number of beans that Gregor wants to have.  Solve the equation  for .








Your answer to part (b) can be written as a function  of the number of beans , where .  Explain what this function represents.







When does Gregor’s model predict that he will accumulate …
 beans?







 beans?



. 

 beans?






Helena and Karl each change the rules for the bean experiment.  Helena started with four beans in her cup and added one bean for each that landed marked-side up for each trial.  Karl started with one bean in his cup but added two beans for each that landed marked-side up for each trial.
Helena modeled her data by the function .  Explain why her values of  and  are reasonable.









Karl modeled his data by the function .  Explain why his values of  and  are reasonable.








At what value of  do Karl and Helena have the same number of beans?


















Use a graphing utility to graph  and  for .


Explain the meaning of the intersection point of the two curves  and  in the context of this problem.








Which student reaches  beans first?  Does the reasoning you used with whether Gregor or Fiona would get to  beans first hold true here?  Why or why not?









For the following functions and, solve the equation   Express your solutions in terms of logarithms.










































































Problem Set 

Solve the following equations.  










Lucy came up with the model  for the first bean activity.  When does her model predict that she would have  beans?

Jack came up with the model  for the first bean activity.  When does his model predict that he would have  beans?

If instead of beans in the first bean activity you were using fair coins, when would you expect to have ?

Let   and .
Which function is growing faster as  increases?  Why?
When will ?

A population of E. coli bacteria can be modeled by the function , and a population of Salmonella bacteria can be modeled by the function , where  measures time in hours.
Graph these two functions on the same set of axes.  At which value of does it appear that the graphs intersect?
Use properties of logarithms to find the time  when these two populations are the same size.  Give your answer to two decimal places. 

Chain emails contain a message suggesting you will have bad luck if you do not forward the email to others.  Suppose a student started a chain email by sending the message to  friends and asking those friends to each send the same email to  more friends exactly one day after receiving the message.  Assuming that everyone that gets the email participates in the chain, we can model the number of people who will receive the email on the th day by the formula where  indicates the day the original email was sent. 
If we assume the population of the United States is  million people and everyone who receives the email sends it to  people who have not received it previously, how many days until there are as many emails being sent out as there are people in the United States? 
The population of Earth is approximately  billion people.  On what day will  billion emails be sent out?
Solve the following exponential equations.





Solve the following exponential equations.



Solve the following exponential equations.



Solve the following exponential equations. 
  	Hint:  Let  and solve for  before solving for 





Solve the following systems of equations.
	a.
	

	b.
	

	c.
	



Because  is an increasing function, we know that if , then .  Thus, if we take logarithms of both sides of an inequality, then the inequality is preserved.  Use this property to solve the following inequalities. 
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