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Student Outcomes
Students prove simple identities involving the sine function, cosine function, and secant function.
Students recognize features of proofs of identities.

Lesson Notes
Students find that in some circumstances, they can start with a false statement and logically arrive at a true statement; so, students should avoid beginning a proof with the statement to be proven.  Instead, they should work on transforming one side of the equation into the other.  In this lesson, they will prove several simple identities.

Classwork
Opening Exercise (10 minutes)
Have students work in pairs on the Opening Exercise.

Opening Exercise
Which of these statements is a trigonometric identity?  Provide evidence to support your claim.
Statement 1:   for  any real number.
Statement 2:   for  any real number.
Statement 3:   for  any real number.
Statement 1 is found by subtracting  from each side of the Pythagorean identity.  Since the Pythagorean identity is true for all real numbers, Statement 1 is also an identity.  The functions on either side of the equal sign in Statement 2 are identical, so they are also equivalent.  The graphs of the functions on either side of the equal sign in Statement 3 intersect, as shown in the figure below, but the functions are not equivalent.  Thus, Statements 1 and 2 are valid identities, but Statement 3 is false.MP.3
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Using Statements 1 and 2, create a third identity, Statement 4, whose left side is .Scaffolding:  
Ask students struggling to see that these are identities to substitute particular values for  in to the left and the right sides of these equations separately to verify that they are true equations.
Demonstrate how to determine Statement 4 for students having trouble seeing it.
To challenge students, ask them to generate another identity using Statements 1 and 2 and explain for which values of  it is valid.

Students are likely to divide the equation in Statement 1 by the equation in Statement 2 to get something like the following statement:  
Statement 4:   for all  for which the functions on both sides are defined

For which values of  is this statement valid?
The left side of the equation in Statement 4 is not defined when , which happens when  is a multiple of .  The right side of the equation is defined for all .  Thus, the equation is true wherever both sides are defined, which is for all  that are not multiples of .
Scaffolding:  
· Student pairs may need to first discuss what it means to prove anything.  Circulate to assist those having trouble with the question and to find those who might present their answer.

Discuss in pairs what it might mean to “prove” an identity.  What might it take to prove, for example, that the following statement is an identity?MP.3

 where  , for all integers . 
Students might come up with various suggestions.  They might say, for example, that , for for all integers  is an identity if  and  define the same functions or if they take the same values for the variable .  The functions on the two sides should have the same domain, but that alone is not enough to make the equation an identity.

To prove an identity, you have to use logical steps to show that one side of the equation in the identity can be transformed into the other side of the equation using already established identities such as the Pythagorean identity or the properties of operation (commutative, associative, and distributive properties).  It is not correct to start with what you want to prove and work on both sides of the equation at the same time, as the following exercise shows.

Exercise (8 minutes)Scaffolding:  
If students have trouble seeing the problem here, you might have them consider the following similar argument:  
· [a]	, so squaring each side, we get
[b]	, which is an identity.
Therefore, squaring each side of a false statement can yield an identity.  That does not make the original statement true.

Students should work on this exercise in groups.  Its purpose is to show that if we start with the goal of a proof, we can end up “proving” a statement that is false.  Part of Standard MP.3 involves distinguishing correct reasoning from flawed reasoning, and if there is a flaw in the argument, explaining what the flaw is.  In this exercise, students see how a line of reasoning can go wrong.
Begin by asking students to take out their calculators and quickly graph the equations 
 and  to determine whether 
 for all  for which both functions are defined is a valid identity.  Students should see from the graphs that the functions are not equivalent.


Exercise
Take out your calculators and quickly graph the equations  and  to determine whether  for all  for which both functions are defined is a valid identity.  You should see from the graphs that the functions are not equivalent.
Suppose that Charles did not think to graph the equations to see if the given statement was a valid identity, so he set about proving the identity using algebra and a previous identity.  His argument is shown below.

First,		[1]  for  any real number.  
Now, using the multiplication property of equality, square both sides, which gives
		[2] for  any real number.
Using the subtraction property of equality, subtract  from each side, which gives
		[3]  for  any real number.
Statement [3] is the Pythagorean identity.  So, replace  by  to get
		[4] , which is definitely true.
Therefore, the original statement must be true.

Does this mean that the student has proven that statement [1] is an identity?  Discuss with your group whether it is a valid proof.  If you decide it is not a valid proof, then discuss with your group how and where his argument went wrong.
No, statement [1] is not an identity; in fact, it is not true as we showed above by graphing the functions on the two sides of the equation.  The sequence of statements is not a proof because it starts with a false statement in statement [1].  Squaring both sides of the equation is an irreversible step that alters the solutions to the equation.  When squaring both sides of an equation, we have assumed that the equality exists, and that amounts to assuming what one is trying to prove.  A better approach to prove an identity is valid would be to take one side of the equation in the proposed identity and work on it until one gets the other side.

The logic used by Charles is essentially, “If Statement [1] is true, then Statement [1] is true,” which does not establish that Statement [1] is true.  Make sure that students understand that all statements in a proof, particularly the first step of a proof, must be known to be true and must follow logically from the preceding statements in order for the proof to be valid.

Example 1 (10 minutes):  Two Proofs of Our New Identity

Example 1:  Two Proofs of Our New Identity
Work through these two different ways to approach proving the identity  where  , for integers .  The proofs make use of some of the following properties of equality and real numbers.  Here , , and  stand for arbitrary real numbers.  


	Reflexive property of equality
	 

	Symmetric property of equality
	If , then .

	Transitive property of equality
	If  and , then .

	Addition property of equality
	If , then .

	Subtraction property of equality
	If , then .

	Multiplication property of equality
	If , then .

	Division property of equality
	If  and , then .

	Substitution property of equality
	If , then  may be substituted for  in any expression containing .

	Associative properties
	 and 

	Commutative properties
	 and 

	Distributive property
	 and 



Fill in the missing parts of the proofs below.  
A. We start with Statement 1 from the opening activity and divide both sides by the same expression,   This step will introduce division by zero when  and will change the set of values of 𝜃 for which the identity is valid.

PROOF. 

	Step
	Left Side of Equation
	
	Equivalent Right Side
	Domain
	Reason

	1
	
	
	
	 any real number
	Pythagorean identity

	2
	
	
	
	 any real number
	Subtraction property of equality

	3
	
	
	
	 any real number
	Distributive property

	4
	
	
	
	  for all integers 
	Division property of equality

	5
	
	
	
	  for all integers 
	Substitution property of equality using




Let  be a real number so that , for all integers .  Since , we can divide both sides by 
 when  to give .  Factoring the numerator of the right side, we have ; thus,  where , for all integers .  



B. Or, we can start with the more complicated side of the identity we want to prove and use algebra and prior trigonometric definitions and identities to transform it to the other side.  In this case, the more complicated expression is .

PROOF. 
	Step
	Left Side of Equation
	
	Equivalent Right Side
	Domain
	Reason

	1
	
	
	
	 , for all integers 
	Substitution property of equality using 


	2
	
	
	
	 , for all integers 
	Distributive property

	3
	
	
	
	 , for all integers 
	Substitution property of equality using




Let  be a real number so that , for all integers We begin with the expression .  According to the Pythagorean identity, .  Substituting this into our expression, we have  .  Factoring the numerator gives .  Thus,  where , for all integers .

Exercises 1–2 (12 minutes)Scaffolding:  
While students work independently on these exercises, work with a small group that would benefit from more teacher modeling in a small group setting.

Students should work on these exercises individually and then share their results either in a group or with the whole class.  Before beginning to prove an identity, students might want to take some scratch paper and work out the main ideas of the proof, taking into account the values for which the functions on either side of the equation are not defined.  Then, they can restrict the values of  or  at the beginning of the proof and not have to worry about it at every step.



Exercises 1–2
Prove that the following are trigonometric identities, beginning with the side of the equation that seems to be more complicated and starting the proof by restricting  to values where the identity is valid.  Make sure that the complete identity statement is included at the end of the proof.
for real numbers  , for all integers .
The more complicated side of the equation is , so we begin with it.  First, we eliminate values of  that are not in the domain.
PROOF.  Let  be a real number so that  , for all integers .
Applying the definitions of the secant and cosecant functions, we have

Simplifying the complex fraction gives 

Thus,  for  , for all integers .

 for all real   for integer .
The sides seem equally complicated, but the left side has two terms, so we begin with it.  In general, functions composed of multiple terms (or a product of multiple terms) can be seen as more complicated than functions having a single term.  However, a valid proof can be written starting on either side of the equation.
PROOF.  Let  be a real number so that  , for all integers .  Then, we express in terms of  and  and find a common denominator.

Adding and applying the Pythagorean identity and then converting to the secant and cotangent functions gives  
Therefore, , where  for all integers .




Closing (1 minute)
Ask students to explain how to prove a trigonometric identity, either in writing, to a partner, or as a class.  Some key points they should mention are listed below.
Start with stating the values of the variable—usually  or —for which the identity is valid.
Work from a fact that is known to be true from either a prior identity or algebraic fact.
A general plan is to start with the more complicated side of the equation you are trying to establish and transform it using a series of steps that can each be justified by prior facts and rules of algebra.  The goal is to create a sequence of equations that are logically equivalent and that end with the desired equation for your identity.
Note that we cannot start with the equation we want because that is assuming what we are trying to prove.  “If A is true, then A is true” does not logically establish that A is true.

Exit Ticket (4 minutes)



Name                 							         		Date              		         
Lesson 16:  Proving Trigonometric Identities

Exit Ticket

Prove the following identity: 
 for real numbers , where   , for all integers .

Exit Ticket Sample Solutions

Prove the following identity:  
 for real numbers , where   , for all integers .  
Begin with the more complicated side.  Find a common denominator, use the Pythagorean identity, and then convert the fraction to its reciprocal. 
PROOF:  Let  be any real number so that , for all integers  Then,

Therefore, , where, for all integers 


Problem Set Sample Solutions
The first problem is designed to reinforce that the sine function is not linear.  The formulas for  and  will be introduced in the next lesson.

1. Does  equal  for all real numbers  and ?
a. Find each of the following:  .


0. Are and equal?
No, because  and .

c. Are there any values of  and  for which ?
Yes.  If either  or  is zero, or if both  and  are multiples of , this is a true statement.  In many other cases it is not true, so it is not true in general.



Use  and identities involving the sine and cosine functions to establish the following identities for the tangent function.  Identify the values of  where the equation is an identity.
d. 
Let  be a real number so that , for any integer . Then,	

Thus, , where , for all integers .

e. 
Let  be a real number so that , for any integer .  Then,

Thus, , where , for all integers .

f. 
Let  be a real number so that , for any integer .  Then,

Thus, , where , for all integers .

g. 
Let  be a real number so that , for any integer .  Then,

Thus, , where , for all integers .








Rewrite each of the following expressions as a single term.  Identify the values of theta for which the original expression and your expression are equal:  
h. 

The expressions are equal where , for all integers .

i. 
The expressions are equal where , for all integers .

j. 

The expressions are equal where , for all integers .

k. 

The expressions are equal where , for all integers .


Prove that for any two real numbers  and , 

PROOF.  Let  and  be any real numbers.  Then,

Therefore, for all real numbers  and ,.

Prove that the following statements are identities for all values of  for which both sides are defined, and describe that set.
l. 
PROOF.  Let  be a real number so that , for all integers .  Then,

Therefore, if , then .

m.  
PROOF.  Let  be a real number so that , for all integers .  Then,

Therefore, if , then .

n. 
PROOF.  Let  be a real number so that , for all integers .  Then,

Therefore, if , then .

o. 
PROOF.  Let  be a real number so that , for all integers .  Then,

Therefore, if , then .

p. 
PROOF.  Let  be a real number so that , for all integers .  Then,

Therefore, if  for all integers , then.

Prove that the value of the following expression does not depend on the value of :

If  for all integers , then

Therefore,  for all values of and for which both sides of the equation are defined.  Thus, the expression does not depend on the value of .
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