

Lesson 17: Modeling with Polynomials—An Introduction

Student Outcomes

• Students interpret and represent relationships between two types of quantities with polynomial functions.

Lesson Notes

In this lesson, students delve more deeply into modeling by writing polynomial equations that can be used to model a particular situation. Students are asked to interpret key features from a graph or table within a contextual situation (**F-IF.B.4**) and select the domain that corresponds to the appropriate graph or table (**F-IF.B.5**).

Classwork

Opening Exercise (8 minutes)

Give students time to work independently on the Opening Exercise before discussing as a class.

- How does this compare with the regression function found yesterday?
 - Answers will vary. Compare each parameter in the function.
- Which function is more accurate? Why?
 - The one found today. The one found yesterday depended on measurements that may not have been exact.

Modeling with Polynomials—An Introduction 7/22/14

Mathematical Modeling Exercises 1–13 (30 minutes)

Allow students to work through the exercises in groups. Circulate the room to monitor students' progress. Then, discuss results.

Lesson 17: Date: Modeling with Polynomials—An Introduction 7/22/14

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

ALGEBRA II

7.	Use the maximum point to find the leading coefficient. Explain your reasoning.									
	Since we have estimated $f(5.5) = 372$, we can plug 5.5 into the function above, and we find that $f(5.5) = 1058.75c = 372$. Solving for c, we find that $c \approx 0.35$. The function that could model the data is then given $f(t) = 0.35t(t - 12.5)(t - 33)$.									
8.	What would be a reasonable domain for your function f ? Why?									
	A reasonable domain for f would be $0 \le x \le 12.5$ because the opening of the park corresponds to $t = 0$, and									
	12.5 hours the park closes so there are no people waiting in line.									
9.	Use your function f to calculate the number of people in line ${f 10}$ hours after the park opens.									
	The formula developed in Exercise 7 gives $f(10)=201$ people.									
10.	Comparing the value calculated above to the actual value in the table, is your function f an accurate model for data? Explain.									
	The value of the function differs from the value from the table by about 21 people, so it is not a perfect fit for t data, but it is otherwise very close. It appears to overestimate the number of people in line.									
11.	Use the regression feature of a graphing calculator to find a cubic function to model the data.									
	The calculator gives $g(t) = 0.43t^3 - 17.78t^2 + 156.63t - 24.16$.									
12.	Graph your function and the one generated by the graphing calculator and use the graphing calculator to com the table. Round your answers to the nearest integer.									
Г	t (hours)	0	1	2	4	7	8	10	12	
	P (people in line)	0	75	225	345	355	310	180	45	
	f (your equation)	0	129	228	345	350	315	201	44	
Ľ	g (regression eqn.)	-24	115	221	345	349	311	194	38	
13.	Based on the results f At $t = 2$ hours, the fu									

Closing (2 minutes)

- What type of functions were used to model the data? Were they good models?
 - ^a Cubic polynomial functions; yes, both functions were reasonably accurate.
- What information did we use to find the function by hand?
 - We used the *x*-intercepts and the relative maximum point.
- Did we have to use the relative maximum specifically to find the leading coefficient?
 - No. We could have chosen a different point on the curve.
- How did polynomials help us solve a real-world problem?
 - We were able to model the data using a polynomial function. The function allows us to estimate the number of people in line at any time t and also to estimate the time when the line is the longest and the maximum number of people are in line.

Exit Ticket (5 minutes)

Modeling with Polynomials—An Introduction 7/22/14

Name

Date	

Lesson 17: Modeling with Polynomials—An Introduction

Exit Ticket

Jeannie wishes to construct a cylinder closed at both ends. The figure at right shows the graph of a cubic polynomial function used to model the volume of the cylinder as a function of the radius if the cylinder is constructed using 150π cm³ of material. Use the graph to answer the questions below. Estimate values to the nearest half unit on the horizontal axis and to the nearest 50 units on the vertical axis.

- 1. What are the zeros of the function?
- 2. What are the relative maximum and the relative maximum values of the function?

3. The equation of this function is $V(r) = c(r^3 - 72.25r)$ for some real number c. Find the value of c so that this formula fits the graph.

- 4. Use the graph to estimate the volume of the cylinder with r = 2 cm.
- 5. Use your formula to find the volume of the cylinder when r = 2 cm. How close is the value from the formula to the value on the graph?

Modeling with Polynomials—An Introduction 7/22/14

188

Exit Ticket Sample Solutions

Problem Set Sample Solutions

Problem 2 requires the use of a graphing calculator. If students do not have the means to complete this, the last two parts could be done in class.

Modeling with Polynomials—An Introduction 7/22/14

ALGEBRA II

Modeling with Polynomials—An Introduction 7/22/14

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.</u>