Lesson 13: Mastering Factoring

Classwork

Opening Exercises

Factor each of the following expressions. What similarities do you notice between the examples in the left column and those on the right?

a.
$$x^2 - 1$$

b.
$$9x^2 - 1$$

c.
$$x^2 + 8x + 15$$

d.
$$4x^2 + 16x + 15$$

e.
$$x^2 - y^2$$

f.
$$x^4 - y^4$$

Example 1

Write $9 - 16x^4$ as the product of two factors.

ALGEBRA II

Example 2

Factor $4x^2y^4 - 25x^4z^6$.

Exercise 1

1. Factor the following expressions:

a.
$$4x^2 + 4x - 63$$

b. $12y^2 - 24y - 15$

ALGEBRA II

Exercises 2-4

Factor each of the following, and show that the factored form is equivalent to the original expression.

2.
$$a^3 + 27$$

3.
$$x^3 - 64$$

4.
$$2x^3 + 128$$

Mastering Factoring 7/21/14

CC BY-NC-SA

Lesson Summary

In this lesson we learned additional strategies for factoring polynomials.

- The difference of squares identity $a^2 b^2 = (a b)(a + b)$ can be used to to factor more advanced
- Trinomials can often be factored by looking for structure and then applying our previous factoring
- Sums and differences of cubes can be factored by the formulas

$$x^3 + a^3 = (x + a)(x^2 - ax - a^2)$$

$$x^3 - a^3 = (x - a)(x^2 + ax + a^2).$$

Problem Set

1. If possible, factor the following expressions using the techniques discussed in this lesson.

a.
$$25x^2 - 25x - 14$$

b.
$$9x^2y^2 - 18xy + 8$$

c.
$$45y^2 + 15y - 10$$

d.
$$y^6 - y^3 - 6$$

e.
$$x^3 - 125$$

f.
$$2x^4 - 16x$$

g.
$$9x^2 - 25y^4z^6$$

h.
$$36x^6y^4z^2 - 25x^2z^{10}$$

i.
$$4x^2 + 9$$

j.
$$x^4 - 36$$

k.
$$1 + 27x^9$$

I.
$$x^3y^6 + 8z^3$$

- Consider the polynomial expression $y^4 + 4y^2 + 16$.
 - a. Is $y^4 + 4y^2 + 16$ factorable using the methods we have seen so far?
 - b. Factor $y^6 64$ first as a difference of cubes, then factor completely: $(y^2)^3 4^3$.
 - c. Factor $y^6 64$ first as a difference of squares, then factor completely: $(y^3)^2 8^2$.
 - Explain how your answers to parts (b) and (c) provide a factorization of $y^4 + 4y^2 + 16$.
 - If a polynomial can be factored as either a difference of squares or a difference of cubes, which formula should you apply first, and why?
- 3. Create expressions that have a structure that allows them to be factored using the specified identity. Be creative and produce challenging problems!
 - Difference of squares
 - b. Difference of cubes
 - Sum of cubes

