Lesson 11: The Special Role of Zero in Factoring

Classwork

Opening Exercise

Find all solutions to the equation $(x^2 + 5x + 6)(x^2 - 3x - 4) = 0$.

Exercise 1

1. Find the solutions of $(x^2 - 9)(x^2 - 16) = 0$.

Example 1

Suppose we know that the polynomial equation $4x^3 - 12x^2 + 3x + 5 = 0$ has three real solutions and that one of the factors of $4x^3 - 12x^2 + 3x + 5$ is (x - 1). How can we find all three solutions to the given equation?

(cc) BY-NC-SA

Exercises 2-5

2. Find the zeros of the following polynomial functions, with their multiplicities.

a.
$$f(x) = (x+1)(x-1)(x^2+1)$$

b.
$$g(x) = (x-4)^3(x-2)^8$$

c.
$$h(x) = (2x - 3)^5$$

d.
$$k(x) = (3x + 4)^{100}(x - 17)^4$$

3. Find a polynomial function that has the following zeros and multiplicities. What is the degree of your polynomial?

Zero	Multiplicity
2	3
-4	1
6	6
-8	10

- 4. Is there more than one polynomial function that has the same zeros and multiplicities as the one you found in Exercise 3?
- 5. Can you find a rule that relates the multiplicities of the zeros to the degree of the polynomial function?

(cc) BY-NC-SA

Relevant Vocabulary Terms

In the definitions below, the symbol $\mathbb R$ stands for the set of real numbers.

<u>Function</u>: A *function* is a correspondence between two sets, *X* and *Y*, in which each element of *X* is assigned to one and only one element of *Y*.

The set X in the definition above is called the *domain of the function*. The *range (or image)* of the function is the subset of Y, denoted f(X), that is defined by the following property: y is an element of f(X) if and only if there is an x in X such that f(x) = y.

If $f(x) = x^2$ where x can be any real number, then the domain is all real numbers (denoted \mathbb{R}), and the range is the set of non-negative real numbers.

Polynomial Function: Given a polynomial expression in one variable, a *polynomial function in one variable* is a function $f: \mathbb{R} \to \mathbb{R}$ such that for each real number x in the domain, f(x) is the value found by substituting the number x into all instances of the variable symbol in the polynomial expression and evaluating.

It can be shown that if a function $f: \mathbb{R} \to \mathbb{R}$ is a polynomial function, then there is some non-negative integer n and collection of real numbers $a_0, a_1, a_2, \ldots, a_n$ with $a_n \neq 0$ such that the function satisfies the equation

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

for every real number x in the domain, which is called the *standard form of the polynomial function*. The function $f(x) = 3x^3 + 4x^2 + 4x + 7$, where x can be any real number, is an example of a function written in standard form.

<u>Degree of a Polynomial Function</u>: The *degree of a polynomial function* is the degree of the polynomial expression used to define the polynomial function.

The degree of $f(x) = 8x^3 + 4x^2 + 7x + 6$ is 3, but the degree of $g(x) = (x+1)^2 - (x-1)^2$ is 1 because when g is put into standard form, it is g(x) = 4x.

Constant Function: A constant function is a polynomial function of degree 0. A constant function is of the form f(x) = c, for a constant c.

<u>Linear Function</u>: A *linear function* is a polynomial function of degree 1. A linear function is of the form f(x) = ax + b, for constants a and b with $a \neq 0$.

Quadratic Function: A quadratic function is a polynomial function of degree 2. A quadratic function is in standard form if it is written in the form $f(x) = ax^2 + bx + c$, for constants a, b, c with $a \ne 0$ and any real number x.

<u>Cubic Function</u>: A *cubic function* is a polynomial function of degree 3. A cubic function is of the form $f(x) = ax^3 + bx^2 + cx + d$, for constants a, b, c, d with $a \ne 0$.

Zeros or Roots of a Function: A zero (or root) of a function $f: \mathbb{R} \to \mathbb{R}$ is a number x of the domain such that f(x) = 0. A zero of a function is an element in the solution set of the equation f(x) = 0.

Lesson 11: Date: The Special Role of Zero in Factoring 7/21/14

Lesson Summary

Given any two polynomial functions p and q, the solution set of the equation p(x)q(x) = 0 can be quickly found by solving the two equations p(x) = 0 and q(x) = 0 and combining the solutions into one set.

The number a is zero of a polynomial function p with multiplicity m if the factored form of p contains $(x-a)^m$.

Problem Set

For Problems 1–4, find all solutions to the given equations.

1.
$$(x-3)(x+2) = 0$$

2.
$$(x-5)(x+2)(x+3) = 0$$

3.
$$(2x-4)(x+5)=0$$

4.
$$(2x-2)(3x+1)(x-1)=0$$

5. Find four solutions to the equation
$$(x^2 - 9)(x^4 - 16) = 0$$
.

6. Find the zeros with multiplicity for the function
$$p(x) = (x^3 - 8)(x^5 - 4x^3)$$
.

8. Find two different polynomial functions that have a zero at 2 of multiplicity 5 and a zero at
$$-4$$
 of multiplicity 3.

9. Find three solutions to the equation
$$(x^2 - 9)(x^3 - 8) = 0$$
.

10. Find two solutions to the equation
$$(x^3 - 64)(x^5 - 1) = 0$$
.

11. If
$$p$$
, q , r , s are non-zero numbers, find the solutions to the equation $(px + q)(rx + s) = 0$ in terms of p , q , r , s .

Use the identity $a^2 - b^2 = (a - b)(a + b)$ to solve the equations given in Problems 12–13.

12.
$$(3x - 2)^2 = (5x + 1)^2$$

13.
$$(x + 7)^2 = (2x + 4)^2$$

Lesson 11: Date:

The Special Role of Zero in Factoring 7/21/14

(cc) BY-NC-SA

engage^{ny}

AI GERRA II

- 14. Consider the polynomial function $P(x) = x^3 + 2x^2 + 2x 5$.
 - a. Divide P by the divisor (x-1) and rewrite in the form P(x) = (divisor)(quotient) + remainder.
 - b. Evaluate P(1).
- 15. Consider the polynomial function $Q(x) = x^6 3x^5 + 4x^3 12x^2 + x 3$.
 - a. Divide Q by the divisor (x-3) and rewrite in the form Q(x)=(divisor)(quotient)+remainder.
 - b. Evaluate Q(3).
- 16. Consider the polynomial function $R(x) = x^4 + 2x^3 2x^2 3x + 2$.
 - a. Divide R by the divisor (x + 2) and rewrite in the form R(x) = (divisor)(quotient) + remainder.
 - b. Evaluate R(-2).
- 17. Consider the polynomial function $S(x) = x^7 + x^6 x^5 x^4 + x^3 + x^2 x 1$.
 - a. Divide S by the divisor (x + 1) and rewrite in the form S(x) = (divisor)(quotient) + remainder.
 - b. Evaluate S(-1).
- 18. Make a conjecture based on the results of Questions 14—17.

(cc) BY-NC-SA