

Lesson 1: Successive Differences in Polynomials

Student Outcomes

 Students write explicit polynomial expressions for sequences by investigating successive differences of those sequences.

Lesson Notes

This first lesson of the year tells students that this course is about thinking and reasoning with mathematics. It reintroduces the study of polynomials in a surprising new way involving sequences. This gives you a chance to evaluate how much your students recall from Grade 9. The lesson starts with discussions of expressions, polynomials, sequences, and equations. In this lesson, students continue the theme that began in Grade 6 of evaluating and building expressions. Explore ways to test your students' recall of the vocabulary terms listed at the end of this lesson.

Throughout this lesson, listen carefully to your students' discussions. Their reactions will inform you how to best approach the rest of the module. The homework set to this lesson should also give you insight into how much they remember from previous grades and how well they can read instructions. In particular, if they have trouble with evaluating or simplifying expressions or solving equations, then you might want to revisit Lessons 6–9 in Grade 9, Module 1, and Lesson 2 in Grade 9, Module 4. If they are having trouble solving equations, use Lessons 10–12, 15–16, and 19 in Grade 9, Module 1 to give them extra practice.

Finally, the use of the term *constant* may need a bit of extra discussion. It is used throughout this PK-12 curriculum in two ways: either as a constant number (e.g., the a in $ax^2 + bx + c$ is a number chosen once-and-for-all at the beginning of a problem) or as a constant rate (e.g., a copier that reproduces at a constant rate of 40 copies/minute). We offer both uses in this lesson.

Classwork

MP.1

8

MP.8

Opening Exercise (7 minutes)

This exercise provides an opportunity to think about and generalize the main concept of today's lesson: that the second differences of a quadratic polynomial are constant. This generalizes to the n^{th} differences of a degree n polynomial. Your goal is to help students investigate, discuss, and generalize the second and higher differences in this exercise.

Present the exercise to your students and ask them (in groups of two) to study the table and explain to their partner how to calculate each line in the table. If they get stuck, help them find entry points into this question, possibly by drawing segments connecting the successive differences on their papers (e.g., connect 5.76 and 11.56 to 5.8 and ask, "How are these three numbers related?"). This initial problem of the school year is designed to encourage students to persevere and look for and express regularity in repeated reasoning.

Teachers may also use the Opening Exercise to informally assess students' pattern-finding abilities and fluency with rational numbers.

Scaffolding:

Before presenting the problem below, you might start by displaying the first two rows of the table on the board and asking students to investigate the relationship between them, including making a conjecture about the nature of the relationship.

Lesson 1: Date:

ALGEBRA II

John noticed patterns i	in the arrangemen	it of numbers in	the table below.			
<u>Number</u>	2.4	3.4	4.4	5.4	ŀ	6.4
<u>Square</u>	5.76	11.56	19.36	29.1	6	40.96
First Differences	5.8	8	7.8	9.8	11.8	
Second Differences		2	2	2		
2		-				
7.4 ² , and then use the To find 7.4 ² , John assu Therefore, the next ter- calculator, we also find	e pattern to find 8. umed the next term im in the square nu d 7. $4^2 = 54.76.$	4 ² . n in the first difj ımbers would h	ferences would have ave to be 40.96 + 1	to be 13.8 since 3.8, which is 54	13.8 is 2 m .76. Checkii	nore than 11.8. ng with a
7.4 ² , and then use the To find 7.4 ² , John assu Therefore, the next ter calculator, we also find To find 8.4 ² , we follow	e pattern to find 8. umed the next tern m in the square nu d $7.4^2 = 54.76.$ v the same process	4 ² . n in the first difj umbers would h s: The next tern	ferences would have ave to be 40.96 + 1 n in the first difference	to be 13.8 since 3.8, which is 54	13.8 is 2 m .76. Checkin	nore than 11.8. ng with a caffolding:
7.4 ² , and then use the To find 7.4 ² , John assu Therefore, the next terr calculator, we also find To find 8.4 ² , we follow 15.8, so the next term $8.4^2 = 70.56$.	e pattern to find 8. umed the next term im in the square nu d $7.4^2 = 54.76.$ v the same process in the square num	4 ² . n in the first difj umbers would h s: The next tern nbers would be	ferences would have ave to be 40.96 + 1 n in the first differenc 54.76 + 15.8, whic	to be 13.8 since 3.8, which is 54 ces would have to h is 70.56. Chec	13.8 is 2 m 76. Checkii b be k: Fc gr	araffolding: araffolding: br students working below rade level, consider using positive integers {1, 2, 3,
7. 4 ² , and then use the To find 7. 4 ² , John assu Therefore, the next ter- calculator, we also find To find 8. 4 ² , we follow 15. 8, so the next term $8. 4^2 = 70.56.$ How would you label e	e pattern to find 8. umed the next term im in the square nu d 7. $4^2 = 54.76.$ iv the same process in the square num each row of numbe	4 ² . n in the first difj umbers would h s: The next tern nbers would be ers in the table?	ferences would have ave to be 40.96 + 1 n in the first difference 54.76 + 15.8, whic	to be 13.8 since 3.8, which is 54 ces would have to h is 70.56. Chec	13.8 is 2 m .76. Checkii o be Sc k: Fc gr pc ar	taffolding: caffolding: or students working below rade level, consider using positive integers {1, 2, 3, nd corresponding squares

Discuss with students the relationship between each row and the row above it and how to label the rows based upon that relationship. Feel free to have this discussion before or after they find 7.4^2 and 8.4^2 . They are likely to come up with labels such as "subtract" or "difference" for the third and fourth row. However, guide them to call the third and fourth rows "First Differences" and "Second Differences," respectively.

Discussion (3 minutes)

The pattern illustrated in the Opening Exercise is a particular case of a general phenomenon about polynomials. In Algebra I, Module 3, we saw how to recognize linear functions and exponential functions by recognizing similar growth patterns; that is, linear functions grow by a "constant difference over successive intervals of equal length," and exponential functions grow by a "constant factor over successive intervals of equal length." In this lesson, we generalize the linear growth pattern to polynomials of second degree (quadratic expressions) and third degree (cubic expressions).

Discussion

Let the sequence $\{a_0, a_1, a_2, a_3, ...\}$ be generated by evaluating a polynomial expression at the values 0, 1, 2, 3,.... The numbers found by evaluating $a_1 - a_0, a_2 - a_1, a_3 - a_2$,... form a new sequence which we will call the *first differences* of the polynomial. The differences between successive terms of the first differences sequence are called the *second differences* and so on.

It is a good idea to use an actual sequence of numbers such as the square numbers $\{1, 4, 9, 16, ...\}$ to help explain the meaning of the terms "first differences" and "second differences."

Lesson 1: Date: Successive Differences in Polynomials 7/21/14

MP.8

Example 1 (4 minutes)

Although you may be tempted to work through Example 1 using numbers instead of *a* and *b*, using symbols *a* and *b* actually makes the *structure* of the first differences sequence obvious, whereas numbers could hide that structure. Also, working with constant coefficients gives the generalization all at once.

Note: Consider using Example 1 to informally assess students' fluency with algebraic manipulations.

Example 1	
What is the sequence of first differences for the linear polynomial given by $ax + b$, where a and b are coefficients?	re constant
The terms of the first differences sequence are found by subtracting consecutive terms in the sequence generated by the polynomial expression $ax + b$, namely, $\{b, a + b, 2a + b, 3a + b, 4a + b,\}$. 1 st term: $(a + b) - b = a$, 2 nd term: $(2a + b) - (a + b) = a$, 3 rd term: $(3a + b) - (2a + b) = a$, 4 th term: $(4a + b) - (3a + b) = a$. The first differences sequence is $\{a, a, a, a,\}$. For first degree polynomial expressions, the first differences are constant and equal to a .	Scaffolding: Try starting the example by first asking students to generate sequences of first differences for $2x + 3$, 3x - 1, and $4x + 2$. For example, the sequence generated by $2x + 3$ is $\{3, 5, 7, 9,\}$ and its sequence of first differences is $\{2, 2, 2, 2, 3\}$
What is the sequence of second differences for $ax + b$?	<i>(2, 2, 2, 2)</i> .
Since $a - a = 0$, the second differences are all 0. Thus the sequence of second differences is $\{0, 0, 0, 0,\}$.	You can then use these three sequences as a source of examples from which to make
	· ·

- How is this calculation similar to the arithmetic sequences you studied in Algebra I, Module 3?
 - The constant derived from the first differences of a linear polynomial is the same constant addend used to define the arithmetic sequence generated by the polynomial. That is, the a in A(n) = an + b for $n \ge 0$. Written recursively this is A(0) = b and A(n + 1) = A(n) + a for $n \ge 0$.

For Examples 2 and 3, let students work in groups of two to fill in the blanks of the tables (3 min. max for each table). Walk around the room, checking student work for understanding. Afterward, discuss the paragraphs below each table as a whole class.

Example 2 (5 minutes)

Example 2	2			
Find the f	rst, second, and third di	ferences of the polynomial	$ax^2 + bx + c$ by filling in the b	lanks in the following table.
x	$ax^2 + bx + c$	First Differences	Second Differences	Third Differences
0	С			
		$\underline{a+b}$		
1	a + b + c		<u>2a</u>	
		$\underline{3a+b}$		<u>0</u>
2	4a + 2b + c		<u>2a</u>	
		<u>5a + b</u>		<u>0</u>
3	9a + 3b + c		<u>2a</u>	
		<u>7a + b</u>		<u>0</u>
4	16a + 4b + c		<u>2a</u>	
		<u>9a + b</u>		
5	25a + 5b + c			

The table shows that the second differences of the polynomial $ax^2 + bx + c$ all have the constant value 2a. The second differences hold for any sequence of values of x where the values in the sequence differ by 1, as the Opening Exercise shows. For example, if we studied the second differences for x-values π , $\pi + 1$, $\pi + 2$, $\pi + 3$,..., we would find that the second differences would also be 2a. In your homework, you will show that this fact is indeed true by finding the second differences for the values n + 0, n + 1, n + 2, n + 3, n + 4.

Ask students to describe what they notice in the sequences of first, second, and third differences. Have them make a conjecture about the third and fourth differences of a sequence generated by a third degree polynomial.

Students are likely to say that the third differences have the constant value 3a (which is incorrect). Have them work through the next example to help them discover what the third differences really are. This is a good example of why we need to follow up conjecture based on observation with proof.

Example 3 (7 minutes)

Example	2 3				
Find the followin	second, third, and fourth difl g table.	ferences of the polyr	nomial $ax^3 + bx^2 + cx$	x+d by filling in the	blanks in the
x	$ax^3 + bx^2 + cx + d$	First Differences	Second Differences	Third Differences	Fourth Differences
0	d				
1	a+b+c+d	a+b+c	<u>6a + 2b</u>		
2	8a+4b+2c+d	7a+3b+c	<u>12a + 2b</u>	<u>6a</u>	<u>0</u>
3	27a + 9b + 3c + d	19a + 5b + c	<u>18a + 2b</u>	<u>6a</u>	<u>0</u>
4	64a + 16b + 4c + d	37a + 7b + c	<u>24a + 2b</u>	<u>6a</u>	
5	125a + 25b + 5c + d	61a + 9b + c			

Successive Differences in Polynomials 7/21/14

engage^{ny}

The third differences of $ax^3 + bx^2 + cx + d$ all have the constant value 6*a*. Also, if a different sequence of values for *x* that differed by 1 was used instead, the third differences would still have the value 6*a*.

- Ask students to make a conjecture about the fourth differences of a sequence generated by degree 4 polynomial. Students who were paying attention to their (likely wrong) conjecture of the third differences before doing this example may guess that the fourth differences are constant and equal to (1 · 2 · 3 · 4)*a*, which is 24*a*. This pattern continues: the *n*th differences of any sequence generated by an *n*th degree polynomial with leading coefficient *a* will be constant and have the value *a* · (*n*!).
- Ask students to make a conjecture about the $(n + 1)^{st}$ differences of a degree *n* polynomial, for example, the 5th differences of a fourth degree polynomial.

Students are now ready to tackle the main goal of this lesson—using differences to recognize polynomial relationships and build polynomial expressions.

Example 4 (7 minutes)

When collecting bivariate data on an event or experiment, the data does not announce, "I satisfy a quadratic relationship," or "I satisfy an exponential relationship." We need ways to recognize these relationships in order to model them with functions. In Algebra I, Module 3, students studied the conditions upon which they could conclude that the data satisfied a linear or exponential relationship. Either the first differences were constant or "first factors" were constant. By checking that the second or third differences of the data are constant, students now have a way to recognize a quadratic or cubic relationship and can write an equation to describe that relationship (A-CED.A.3, F-BF.A.1a).

Give students an opportunity to attempt this problem in groups of two. Walk around the room helping them find the leading coefficient.

10	e. (The first difference	es have already been com	puted for you.)	
x	у	First Differences	Second Differences	Third Differences
0	2			
		-1		
1	1		<u>6</u>	
		5		<u>6</u>
2	6		<u>12</u>	
		17		6
3	23		18	
		35		6
4	58		24	_
		59		
5	117			

Find the equation of the form $y = ax^3 + bx^2 + cx + d$ that all ordered pairs (x, y) above satisfy. Give evidence that your equation is correct. Since third differences of a cubic polynomial are equal to 6a, using the table above, we get 6a = 6, so that a = 1. Also, since (0, 2) satisfies the equation, we see that d = 2. Thus, we need only find b and c. Substituting (1, 1) and (2, 6) into the equation, we get 1 = 1 + b + c + 2 6 = 8 + 4b + 2c + 2.
Subtracting two times the first equation from the second, we get 4 = 6 + 2b - 2, so that b = 0. Substituting 0 in for b in the first equation gives c = -2. Thus, the equation is $y = x^3 - 2x + 2$.

After finding the equation, have students check that the pairs (3, 23) and (4, 58) satisfy the equation.

Help students to persevere in finding the coefficients (MP.1). They will most likely try to plug three ordered pairs into the equation, which gives a 3×3 system of linear equations in a, b, and c after they find that d = 2. Using the fact that the third differences of a cubic polynomial are 6a will greatly simplify the problem. (It implies a = 1 immediately, which reduces the system to the easy 2×2 system above.) Walk around the room as they work, and ask questions that lead them to realize that they can use the third differences fact if they get too stuck. Alternatively, find a student who used the fact, and then have the class discuss and understand his or her approach.

Closing (7 minutes)

- What are some of the key ideas that we learned today?
 - Sequences whose second differences are constant satisfy a quadratic relationship.
 - Sequences whose third differences are constant satisfy a cubic relationship.

The following terms were introduced and taught in Module 1 of Algebra I. The terms are listed here for completeness and reference.

Relevant Vocabulary
<u>Numerical Symbol</u> : A <i>numerical symbol</i> is a symbol that represents a specific number. Examples: 1, 2, 3, 4, π , -3.2.
<u>Variable Symbol</u> : A variable symbol is a symbol that is a placeholder for a number from a specified set of numbers. The set of numbers is called the <i>domain of the variable</i> . Examples: x, y, z .
Algebraic Expression: An algebraic expression is either
1. a numerical symbol or a variable symbol or
 the result of placing previously generated algebraic expressions into the two blanks of one of the four operators (()+(), ()-(), ()×(), ()÷()) or into the base blank of an exponentiation with an exponent that is a rational number.
Following the definition above, $((x \times (x)) \times (x)) + ((3) \times (x))$ is an algebraic expression, but it is generally written more simply as $x^3 + 3x$.
Numerical Expression: A numerical expression is an algebraic expression that contains only numerical symbols (no
variable symbols) that evaluates to a single number. Example: The numerical expression $\frac{(3\cdot 2)^2}{12}$ evaluates to 3.
Monomial: A monomial is an algebraic expression generated using only the multiplication operator (×). The expressions x^3 and $3x$ are both monomials.
Binomial: A <i>binomial</i> is the sum of two monomials. The expression $x^3 + 3x$ is a binomial.

Polynomial Expression: A polynomial expression is a monomial or sum of two or more monomials.

Sequence: A sequence can be thought of as an ordered list of elements. The elements of the list are called the *terms of the sequence*.

<u>Arithmetic Sequence</u>: A sequence is called *arithmetic* if there is a real number d such that each term in the sequence is the sum of the previous term and d.

Exit Ticket (5 minutes)

Name

Date _____

Lesson 1: Successive Differences in Polynomials

Exit Ticket

1. What type of relationship is indicated by the following set of ordered pairs? Explain how you know.

x	у
0	0
1	2
2	10
3	24
4	44

2. Find an equation that all ordered pairs above satisfy.

Exit Ticket Sample Solutions

Problem Set Sample Solutions

t	$36 - 16t^2$	First Differences	Second Differences
0	36		
		-16	
1	20		-32
		-48	
2	-28		-32
		-80	
3	-108		-32
		-112	
4	-220		-32
		-144	
5	-364		

ALGEBRA II

	S		$s^3 - s^2 + s$	First Differ	rences	Second Differences	Third Differences
	-3	8	-39	25			
	-2	2	-14	25		-14	
			2	11		o	6
	-	L	-3	3		-0	6
	0		0 0			-2	
	1		1	1		4	6
				5			6
	2		6	15		10	
	3		21				
		<i>x</i>	$\frac{\chi^2}{m^2}$	First Diff	ferences	Second Diff	erences
		<i>x</i>	$\frac{x^2}{n^2}$	First Diff	rerences	Second Diff	erences
n		n	п				
		n + 1	$n^2 \pm 2n \pm 1$	2 <i>n</i> -	+ 1	2	
		<i>n</i> <i>n</i> +1	$n^{2} + 2n + 1$	2 <i>n</i> - 2 <i>n</i> -	+ 1 + 3	2	
		n n+1 n+2	$n^2 + 2n + 1$ $n^2 + 4n + 4$	2n - 2n - 2n -	+ 1 + 3 + 5	2	
		n $n+1$ $n+2$ $n+3$	$n^{2} + 2n + 1$ $n^{2} + 4n + 4$ $n^{2} + 6n + 9$	2n - 2n - 2n -	+ 1 + 3 + 5	2 2 2	
		n $n + 1$ $n + 2$ $n + 3$ $n + 4$	$n^{2} + 2n + 1$ $n^{2} + 4n + 4$ $n^{2} + 6n + 9$ $n^{2} + 8n + 16$	2n - 2n - 2n - 2n -	+ 1 + 3 + 5 + 7	2 2 2	
		n + 1 n + 2 n + 3 n + 4	$n^{2} + 2n + 1$ $n^{2} + 4n + 4$ $n^{2} + 6n + 9$ $n^{2} + 8n + 16$	2n - 2n - 2n - 2n -	+ 1 + 3 + 5 + 7	2 2 2	
	Show tha differenc	n + 1 $n + 2$ $n + 3$ $n + 4$ In the set of the set.) Find the set of the set of the set.	$n^{2} + 2n + 1$ $n^{2} + 4n + 4$ $n^{2} + 6n + 9$ $n^{2} + 8n + 16$ Fordered pairs (x, y) is the equation of the form	n the table below m $y = ax^2 + bx$	+ 1 + 3 + 5 + 7 w satisfies + c that a	2 2 2 2 a quadratic relation all of the ordered pai	ship. (Hint: Find se rs satisfy.
	Show that difference x	n $n + 1$ $n + 2$ $n + 3$ $n + 4$ In the set of the set of the set.) Find the set of the set of the set.	$n^{2} + 2n + 1$ $n^{2} + 4n + 4$ $n^{2} + 6n + 9$ $n^{2} + 8n + 16$ Fordered pairs (x, y) is the equation of the form	2n -	+ 1 + 3 + 5 + 7 w satisfies + c that a 3	2 2 2 a quadratic relation all of the ordered pai	ship. (Hint: Find se rs satisfy. 5
	Show that difference x y	n $n + 1$ $n + 2$ $n + 3$ $n + 4$ It the set of es.) Find the of the set of the set.	$n^{2} + 2n + 1$ $n^{2} + 4n + 4$ $n^{2} + 6n + 9$ $n^{2} + 8n + 16$ Fordered pairs (<i>x</i> , <i>y</i>) is the equation of the formula 1 1 4	2n -	+ 1 $+ 3$ $+ 5$ $+ 7$ w satisfies $+ c that a$ -10	a quadratic relation all of the ordered pair 4 -23	ship. (Hint: Find se rs satisfy. 5 -40
	Show that difference x y Students	n $n + 1$ $n + 2$ $n + 3$ $n + 4$ If the set of es.) Find the of the set of es. Find the set of es. The set of the set of es. The set of the set of es. The set of	$n^{2} + 2n + 1$ $n^{2} + 4n + 4$ $n^{2} + 6n + 9$ $n^{2} + 8n + 16$ Fordered pairs (x, y) is equation of the form 1 4 Second differences are	2n -	$+ 1$ $+ 3$ $+ 5$ $+ 7$ w satisfies $+ c \text{ that a}$ $\frac{3}{-10}$ gual to -4	2 2 2 2 a quadratic relation all of the ordered pair 4 -23	ship. (Hint: Find set its satisfy. $\frac{5}{-40}$ $-2x^{2} + x + 5.$
	Show that difference x y Students Show that difference	n $n + 1$ $n + 1$ $n + 2$ $n + 3$ $n + 4$ In the set of the set.) Find the set of the set of the set of the set.) Find the set of	$n^{2} + 2n + 1$ $n^{2} + 4n + 4$ $n^{2} + 6n + 9$ $n^{2} + 8n + 16$ Fordered pairs (x, y) is equation of the for 1 4 Fordered pairs (x, y) is equation of the for	2n -	$+ 1$ $+ 3$ $+ 5$ $+ 7$ w satisfies $\frac{3}{-10}$ qual to -4 w satisfies $^{2} + cx + c$	a quadratic relation all of the ordered pair $\frac{4}{-23}$ b. The equation: $y =$ a cubic relationship. d that all of the order	ship. (Hint: Find set rs satisfy. $\frac{5}{-40}$ $-2x^{2} + x + 5.$ (Hint: Find third red pairs satisfy.
	Show that difference x y Students Show that difference x	n $n + 1$ $n + 2$ $n + 3$ $n + 4$ If the set of es.) Find the set of es.) Find the set of es.) Find the set of es. (b) and (b) are set of es. (b) are set of es.) Find the set of es. (b) are set of es.	$n^{2} + 2n + 1$ $n^{2} + 4n + 4$ $n^{2} + 6n + 9$ $n^{2} + 8n + 16$ Fordered pairs (x, y) is equation of the form 1 Execond differences are cordered pairs (x, y) is equation of the form 1	2n -	$+ 1$ $+ 3$ $+ 5$ $+ 7$ $w \text{ satisfies}$ $r + c \text{ that a}$ 3 -10 $qual to -4$ $w \text{ satisfies}$ $^{2} + cx + c$ 3	a quadratic relation all of the ordered pair 4 -23 4. The equation: $y =a cubic relationship.d that all of the order4$	ship. (Hint: Find set its satisfy. $\frac{5}{-40}$ $-2x^2 + x + 5.$ (Hint: Find third red pairs satisfy. 5

ALGEBRA II

v	0	1	2	3	4	5					
d	0	5	19.5	43.5	77	120					
a.	What type of r Students show	elationship is indi that second diffe	cated by the set rences are const	t of ordered pairs	s? o 9.5. Therefore,	the relationship is					
	quadratic.										
b.	Assuming that reaches 60 mp	the relationship c h, when $v=6$.	continues to hole	d, find the distar	nce required to st	op the car when the					
	172.5 ft.										
c.	(Challenge) Fin	d an equation tha	at describes the	relationship bet	ween the speed o	of the car v and its st					
	distance a . $d = 4.75v^2 + c$	0.25v (Note: St	udents do not n	eed to find the e	quation to answe	er part (b).)					
				-							
Use a.	the polynomial e Create a table	xpressions $5x^2$ + of second differer	x + 1 and $2x +$	\cdot 3 to answer the nomial $5x^2 + x$	e questions belov + 1 for the integ	v. er values of <i>x</i> from (
	x	$5x^2 + x + 1$	First	Differences	Second Dij	ferences					
	0	1		6							
	1	7		<u>o</u>	<u>1(</u>	2					
	2	22		<u>16</u>	10						
	2	23		<u>26</u>	<u>11</u>	<u>.</u>					
	3	49		26	<u>1(</u>	2					
	4	85		<u>30</u>	<u>1(</u>	2					
	E	121		<u>46</u>							
	5	131									
b.	Justin claims the are the same and $(5x^2 + x + 1)$ Justin might be	hat for $n \ge 2$, the s the n^{th} differen + (2x + 3) of a c e correct in genera	n^{th} differences ces of just the d degree 2 and a c al.	of the sum of a legree <i>n</i> polynon legree 1 polynor	degree <i>n</i> polynoi nial. Find the sec nial and use the o	nial and a linear poly ond differences for t calculation to explair					
	Students comp correct becaus higher) differe degree n polyr	ute that the secor e the differences o nces of the degree nomial contribute	nd differences and bifferences and bifferences and bifferent bifferences and b	re constant and d he sum of the dij are constant and ence of the sum.	equal to 10, just fferences. Since t equal to zero, on	as in part (a). Justin he second (and all ot ly the n th differences					
c.	Jason thinks he $(n+1)^{th}$ diffe n^{th} differences Examples 2 and incorrect.	e can generalize Ju erences of the pro s of the degree n d 3) and the polyn	ustin's claim to t duct of a degree polynomial. Use nomial $(5x^2 + x)$	the product of tw e <i>n</i> polynomial a e what you know (x + 1)(2x + 3) to	vo polynomials. Ind a linear polyn v about second ar o show that Jasor	He claims that for <i>n</i> omial are the same a nd third differences (n's generalization is					
		ferences of a auad	dratic polvnomia	al are 2a, so the	second difference	es of $5x^2 + x + 1$ are					

