Mathematics Curriculum

Table of Contents ${ }^{1}$
Extending to Three Dimensions
Module Overview 2
Topic A: Area (G-GMD.A.1) 6
Lesson 1: What Is Area? 8
Lesson 2: Properties of Area 24
Lesson 3: The Scaling Principle for Area 36
Lesson 4: Proving the Area of a Disk 49
Topic B: Volume (G-GMD.A.1, G-GMD.A.3, G-GMD.B.4, G-MG.A.1, G-MG.A.2, G-MG.A.3). 65
Lesson 5: Three-Dimensional Space 67
Lesson 6: General Prisms and Cylinders and Their Cross-Sections 83
Lesson 7: General Pyramids and Cones and Their Cross-Sections 101
Lesson 8: Definition and Properties of Volume 116
Lesson 9: Scaling Principle for Volumes 134
Lesson 10: The Volume of Prisms and Cylinders and Cavalieri's Principle 147
Lesson 11: The Volume Formula of a Pyramid and Cone 159
Lesson 12: The Volume Formula of a Sphere 174
Lesson 13: How Do 3D Printers Work? 192
End-of-Module Assessment and Rubric 204Topics A through B (assessment 1 day, return 1 day)

[^0]
Geometry • Module 3

Extending to Three Dimensions

OVERVIEW

Module 3, Extending to Three Dimensions, builds on students' understanding of congruence in Module 1 and similarity in Module 2 to prove volume formulas for solids.

Topic A studies informal limit arguments to find the area of a rectangle with an irrational side length and of a disk (G-GMD.A.1). It also focuses on properties of area that arise from unions, intersections, and scaling. These topics prepare for understanding limit arguments for volumes of solids.

Topic B is introduced by a lesson where students experimentally discover properties of three-dimensional space that are necessary to describe three-dimensional solids such as cylinders and prisms, cones and pyramids, and spheres. Cross-sections of these solids are studied and are classified as similar or congruent (G-GMD.B.4). A dissection is used to show the volume formula for a right triangular prism after which limit arguments give the volume formula for a general right cylinder (G-GMD.A.1).

In Lesson 10, two-dimensional cross-sections of solids are used to approximate solids by general right cylindrical slices and leads to an understanding of Cavalieri's principle (G-GMD.A.1). Congruent cross-sections for a general (skew) cylinder and Cavalieri's principle lead to the volume formula for a general cylinder.

To find the volume formula of a pyramid, a cube is dissected into six congruent pyramids to find the volume of each one. Scaling the given pyramids, according to a scaling principle analogous to the one introduced in Topic A, gives the volume formula for a right rectangular pyramid. The cone cross-section theorem and Cavalieri's principle are then used to find the volume formula of a general cone (G-GMD.A.1, G-GMD.A.3).

Cavalieri's principle is used to show that the volume of a right circular cylinder with radius R and height R is the sum of the volume of hemisphere of radius R and the volume of a right circular cone with radius R and height R. This information leads to the volume formula of a sphere (G-GMD.A.2, G-GMD.A.3).

Focus Standards

Explain volume formulas and use them to solve problems. ${ }^{2}$

G-GMD.A. 1 Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.

G-GMD.A. 3 Use volume formulas for cylinders, pyramids, cones and spheres to solve problems. ${ }^{\star}$

[^1]Visualize relationships between two-dimensional and three-dimensional objects.
G-GMD.B. 4 Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.

Apply geometric concepts in modeling situations.

G-MG.A. 1 Use geometric shapes, their measures, and their properties to describe objects (e.g. modeling a tree trunk or a human torso as a cylinder).*

G-MG.A. 2 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ${ }^{\star}$

G-MG.A. 3 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*

Extension Standards

Explain volume formulas and use them to solve problems.
G-GMD.A. 2 (+) Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.

Foundational Standards

Draw, construct, and describe geometrical figures and describe the relationships between them.
7.G.A. 3 Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.

Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.
7.G.B. $4 \quad$ Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and the area of a circle.

Understand and apply the Pythagorean Theorem.

8.G.B. 7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.

Solve real-life and mathematical problems involving volume of cylinders, cones, and spheres.
8.G.C. 9 Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

Focus Standards for Mathematical Practice

MP. 6 Attend to precision. Students will formalize definitions, using explicit language to define terms such as right rectangular prism that have been informal and more descriptive in earlier grade levels.
MP. 7 Look for and make use of structure. The theme of approximation in Module 3 is an interpretation of structure. Students approximate both area and volume (curved twodimensional shapes and cylinders and cones with curved bases) polyhedral regions. They must understand how and why it is possible to create upper and lower approximations of a figure's area or volume. The derivation of the volume formulas for cylinders, cones, and spheres, and the use of Cavalieri's principle is also based entirely on understanding the structure and sub-structures of these figures.

Terminology

New or Recently Introduced Terms

- Cavalieri's Principle (Given two solids that are included between two parallel planes, if every plane parallel to the two planes intersects both solids in cross-sections of equal area, then the volumes of the two solids are equal.)
- Cone (Let B be a region in a plane E, and V be a point not in E. The cone with base B and vertex V is the union of all segments $\overline{V P}$ for all points P in B. If the base is a polygonal region, then the cone is usually called a pyramid.)
- General Cylinder (Let E and E^{\prime} be two parallel planes, let B be a region in the plane E, and let L be a line which intersects E and E^{\prime} but not B. At each point P of B, consider the segment $\overline{P P^{\prime}}$ parallel to L, joining P to a point P^{\prime} of the plane E^{\prime}. The union of all these segments is called a cylinder with base B.)
- Inscribed Polygon (A polygon is inscribed in a circle if all of the vertices of the polygon lie on the circle.)
- Intersection (The intersection of A and B is the set of all objects that are elements of A and also elements of B. The intersection is denoted $A \cap B$.)
- Rectangular Pyramid (Given a rectangular region B in a plane E, and a point V not in E, the rectangular pyramid with base B and vertex V is the union of all segments $\overline{V P}$ for points P in B.)
- Right Rectangular Prism (Let E and E^{\prime} be two parallel planes. Let B be a rectangular region in the plane E. At each point P of B, consider the segment $P P^{\prime}$ perpendicular to E, joining P to a point P^{\prime} of the plane E^{\prime}. The union of all these segments is called a right rectangular prism.)
- Solid Sphere or Ball (Given a point C in the three-dimensional space and a number $r>0$, the solid sphere (or ball) with center C and radius r is the set of all points in space whose distance from point C is less than or equal to r.)
- Sphere (Given a point C in the three-dimensional space and a number $r>0$, the sphere with center C and radius r is the set of all points in space that are distance r from the point C.)
- Subset (A set A is a subset of a set B if every element of A is also an element of B.)
- Tangent to a Circle (A tangent line to a circle is a line that intersects a circle in one and only one point.)
- Union (The union of A and B is the set of all objects that are either elements of A or of B or of both. The union is denoted $A \cup B$.)

Familiar Terms and Symbols ${ }^{3}$

- Disk
- Lateral Edge and Face of a Prism

Suggested Tools and Representations

- Three-dimensional models of rectangular prisms, right circular cylinders, right pyramids
- Deck of cards
- Stack of coins
- Images of "sliced" figures, such as a loaf of bread or a stack of deli cheese

Assessment Summary

Assessment Type	Administered	Format	Standards Addressed
Assessment Task	After Topic B	Constructed response with rubric	G-GMD.A.1, G-GMD.A.3,
		G-GMD.B.4, G-MG.A.1,	

[^2]
[^0]: ${ }^{1}$ Each lesson is ONE day, and ONE day is considered a 45-minute period.

[^1]: ${ }^{2}$ The (+) standard on the volume of the sphere is an extension of G-GMD.A.1. It is explained by the teacher in this grade and used by students in G-GMD.A.3. Note: Students are not assessed on proving the volume of a sphere formula until Precalculus.

[^2]: ${ }^{3}$ These are terms and symbols students have seen previously.

